-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathenergy_comparison.py
52 lines (42 loc) · 1.72 KB
/
energy_comparison.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import pandas as pd
from analytical_E_levels import analytical_E
import matplotlib.pyplot as plt
from os import listdir
from error import error
import numpy as np
import math
"""
Compares energy levels produced by "wavefunction_generator.py" to those from "analytical_E_levels.py"
"""
all_csvs=listdir("energy_levels")
for i in all_csvs: #filters out non-csv files/directories from "phys389-2020-project-JP-Carr\energy_levels"
if ".csv" not in i:
all_csvs.remove(i)
try:
dfs=[pd.read_csv("energy_levels\\"+ file) for file in all_csvs] #create dataframe from E_n csv
except:
error("Unable to read 1 or more CSVs")
dic={} #dictionary to store relevent data from dataframe to allow for easy plotting
for df in dfs:
dic[str(df.columns[0])]=[[df["n"][i],df["epsilon"][i]] for i in range(len(df["n"]))]
max_dif=[]
plt.figure("comparison") #demonstrates the difference between the energy levels produced by different methods
for i in dic:
x=np.array([j[0] for j in dic[i]])
numerical_epsilon=np.array([j[1] for j in dic[i]])
analytical_epsilon=analytical_E(x)
y=numerical_epsilon/-analytical_epsilon
plt.plot(x,y, label="N="+i)
max_dif.append([int(i),max([abs(max(y)-1),abs(min(y)-1)])])
plt.xlabel("n")
plt.ylabel(r"$\epsilon_{numerical}/\epsilon_{analytical}$")
plt.tick_params(which='both',direction='in',right=True,top=True)
plt.legend()
plt.figure("Maximum difference") #plots the maximum difference between the two methods
plt.xlabel("N")
plt.ylabel(r"$log(\Delta \epsilon_{max})$")
plt.tick_params(which='both',direction='in',right=True,top=True)
dif_x=np.array([i[0] for i in sorted(max_dif)])
dif_y=np.array([math.log10(i[1]) for i in sorted(max_dif)])
plt.plot(dif_x,dif_y,"r+")
plt.show()