-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathImageStacker.py
222 lines (173 loc) · 9.9 KB
/
ImageStacker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# -*- coding: utf-8 -*-
"""
This file is part of verysharp,
copyright (c) 2016 Björn Sonnenschein.
verysharp is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
verysharp is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with verysharp. If not, see <http://www.gnu.org/licenses/>.
"""
import numpy as np
import ImageAligner
import cv2
import ImageDataHolder
import CommonFunctions
import Deconvolver
from PyQt5.QtCore import QThread, pyqtSignal
class ImageStacker(QThread):
signal_finished = pyqtSignal()
signal_status_update = pyqtSignal(str)
def __init__(self, image_paths, output_path):
QThread.__init__(self)
self.image_paths = image_paths
self.output_path = output_path
self.scale_factor = 2.
self.continue_processing = [True] # wrapper for passing per reference
self.tile_size = 1024
self.tile_margin = 256
self.tiles = None
self.bool_deconvolve = True
def __del__(self):
self.wait()
def run(self):
self.stackImages()
def abort(self):
self.continue_processing[0] = False
## stack a set of Images by averaging
# @param images list of astropy fits Objects
def stackImages(self):
# build the image data object containing the hdulists
dataset = ImageDataHolder.ImageDataHolder(self.image_paths)
# instanciate the image aligner object
image_aligner = ImageAligner.ImageAligner(self.scale_factor)
# calculate the transformation matrices for alignment
image_dimension = cv2.imread(self.image_paths[0]).shape
self.tiles = self.calculateTiles(image_dimension)
image_aligner.calculateTransformationMatrices(dataset,
self.tiles,
self.continue_processing,
self.signal_status_update)
# create output image as numpy array with upscaled image size
stacked_image = np.zeros(image_dimension, np.float32)
stacked_image_upscaled = cv2.resize(stacked_image,
None,
fx=self.scale_factor,
fy=self.scale_factor,
interpolation=cv2.INTER_CUBIC)
# will be used for motion detection in the far future...
# # calculate distortion maps
# if self.config["Processing_Options"]["correct_seeing"] == "True":
# # instanciate the flow calculator object
# flow_calculator = FlowCalculator.FlowCalculator(self.config, self.scale_factor)
#
# # calculate the distortion maps
# flow_calculator.calculateDistortionMaps(dataset)
# average images
num_images = len(self.image_paths) # number of images = length of image list
for index in range(num_images):
if self.continue_processing[0] == False:
return "aborted"
print ("stacking image ", index)
status = "stacking image " + str(index + 1) + " of " + str(num_images)
self.signal_status_update.emit(status)
# get the data of given index
data = dataset.getData(index)
# align and undistort image
image_processed = self.processImage(index, data)
del data
# stack the image
stacked_image_upscaled += image_processed
stacked_image_upscaled /= num_images
print ("deconvolve image")
if self.continue_processing[0]:
if self.bool_deconvolve:
deconvolver = Deconvolver.Deconvolver()
stacked_image_upscaled_deconvolved = deconvolver.deconvolveLucy(stacked_image_upscaled,
self.continue_processing,
self.signal_status_update)
else:
stacked_image_upscaled_deconvolved = stacked_image_upscaled
#stacked_image_upscaled_deconvolved = stacked_image_upscaled
if self.continue_processing[0]:
cv2.imwrite(self.output_path, stacked_image_upscaled_deconvolved)
self.signal_status_update.emit("finished!")
self.signal_finished.emit()
## align and undistort the image.
# @param data dictionary of {hdu_list, transform_matrix, distortion_map}
# @return processed image as numpy float32 array
def processImage(self, index, data):
# get the image
raw_image = CommonFunctions.preprocessImage(data["image"],
self.scale_factor,
interpolation=cv2.INTER_CUBIC)
image_dimension = raw_image.shape
# create output image as numpy array with upscaled image size
processed_image = np.zeros(image_dimension, np.float32)
# align all tiles
for tile, transform_matrix in zip(self.tiles, data["transform_matrix"]):
tile_slice_raw_image = np.s_[tile["y"][0]:tile["y"][1],
tile["x"][0]:tile["x"][1]]
raw_image_tile = raw_image[tile_slice_raw_image]
tile_aligned = cv2.warpAffine(raw_image_tile,
transform_matrix,
(raw_image_tile.shape[1],raw_image_tile.shape[0]),
flags=cv2.INTER_CUBIC + cv2.WARP_INVERSE_MAP);
# Insert the inner area of tile_aligned (so without margins) into
# the appropriate area in the processed image
min_x = tile["x"][0] + tile["margin_x"][0]
min_y = tile["y"][0] + tile["margin_y"][0]
max_x = tile["x"][1] - tile["margin_x"][1]
max_y = tile["y"][1] - tile["margin_y"][1]
tile_slice_processed_image = np.s_[min_y:max_y,
min_x:max_x]
max_y_aligned = tile_aligned.shape[0] - tile["margin_y"][1]
max_x_aligned = tile_aligned.shape[1] - tile["margin_x"][1]
tile_aligned_slice = np.s_[tile["margin_y"][0]:max_y_aligned,
tile["margin_x"][0]:max_x_aligned]
tile_aligned_without_margin = tile_aligned[tile_aligned_slice]
processed_image[tile_slice_processed_image] = tile_aligned_without_margin
return processed_image
def calculateTiles(self, image_dimension):
# todo: also save the effective margins in some way for later processing
image_dimension_upscaled = (np.round(np.multiply(image_dimension,self.scale_factor))).astype(int) # TODO: correct rounding?
tiles = []
num_tiles_x = int(np.ceil(image_dimension_upscaled[1] / self.tile_size))
num_tiles_y = int(np.ceil(image_dimension_upscaled[0] / self.tile_size))
# attention: max values are indices for slicing, so they are in fact
# max + 1 due to python indexing!
for index_y in range(num_tiles_y):
for index_x in range(num_tiles_x):
min_x_without_margins = index_x * self.tile_size
min_y_without_margins = index_y * self.tile_size
max_x_without_margins = (index_x + 1) * self.tile_size
max_y_without_margins = (index_y + 1) * self.tile_size
min_x = min_x_without_margins - self.tile_margin
min_y = min_y_without_margins - self.tile_margin
max_x = max_x_without_margins + self.tile_margin
max_y = max_y_without_margins + self.tile_margin
# correct for image bounds
min_x_corrected = max(min_x, 0)
min_y_corrected = max(min_y, 0)
max_x_corrected = min(max_x, image_dimension_upscaled[1])
max_y_corrected = min(max_y, image_dimension_upscaled[0])
# calculate effective margins
min_x_without_margins = max(min_x_without_margins, 0)
min_y_without_margins = max(min_y_without_margins, 0)
max_x_without_margins = min(max_x_without_margins, image_dimension_upscaled[1])
max_y_without_margins = min(max_y_without_margins, image_dimension_upscaled[0])
margin_x_left = min_x_without_margins - min_x_corrected
margin_y_left = min_y_without_margins - min_y_corrected
margin_x_right = max_x_corrected - max_x_without_margins
margin_y_right = max_y_corrected - max_y_without_margins
tile = {"x":[min_x_corrected,max_x_corrected],
"y":[min_y_corrected,max_y_corrected],
"margin_x":[margin_x_left,margin_x_right],
"margin_y":[margin_y_left,margin_y_right]}
tiles.append(tile)
return tiles