-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbuild_model.py
283 lines (234 loc) · 9.72 KB
/
build_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import numpy as np
import pandas as pd
import json
from pathlib import Path
from sonata.circuit import File
from sonata.reports.spike_trains import SpikeTrains
import pygenn
import matplotlib.pyplot as plt
from helper import (
optimize_nodes_df_memory,
optimize_edges_df_memory,
get_dynamics_params,
GLIF3,
load_df,
save_df,
psc_Alpha,
)
v1_net = File(
data_files=[
"GLIF Network/network/v1_nodes.h5",
"GLIF Network/network/v1_v1_edges.h5",
],
data_type_files=[
"GLIF Network/network/v1_node_types.csv",
"GLIF Network/network/v1_v1_edge_types.csv",
],
)
lgn_net = File(
data_files=[
"GLIF Network/network/lgn_nodes.h5",
"GLIF Network/network/lgn_v1_edges.h5",
],
data_type_files=[
"GLIF Network/network/lgn_node_types.csv",
"GLIF Network/network/lgn_v1_edge_types.csv",
],
)
bkg_net = File(
data_files=[
"GLIF Network/network/bkg_nodes.h5",
"GLIF Network/network/bkg_v1_edges.h5",
],
data_type_files=[
"GLIF Network/network/bkg_node_types.csv",
"GLIF Network/network/bkg_v1_edge_types.csv",
],
)
DYNAMICS_BASE_DIR = Path("./GLIF Network/models/cell_models/nest_2.14_models")
SIM_CONFIG_PATH = Path("./GLIF Network/config.json")
LGN_V1_EDGE_CSV = Path("./GLIF Network/network/lgn_v1_edge_types.csv")
V1_EDGE_CSV = Path("./GLIF Network/network/v1_v1_edge_types.csv")
LGN_SPIKES_PATH = Path(
"GLIF Network/inputs/full3_GScorrected_PScorrected_3.0sec_SF0.04_TF2.0_ori270.0_c100.0_gs0.5_spikes.trial_0.h5"
)
LGN_NODE_DIR = Path("./GLIF Network/network/lgn_node_types.csv")
V1_NODE_CSV = Path("./GLIF Network/network/v1_node_types.csv")
V1_ID_CONVERSION_FILENAME = Path(".", "pkl_data", "v1_edges_df.pkl")
LGN_ID_CONVERSION_FILENAME = Path(".", "pkl_data", "lgn_edges_df.pkl")
BKG_V1_EDGE_CSV = Path("./GLIF Network/network/bkg_v1_edge_types.csv")
BKG_ID_CONVERSION_FILENAME = Path(".", "pkl_data", "bkg_edges_df.pkl")
NUM_RECORDING_TIMESTEPS = 10000
num_steps = 3000000
ALPHA_TAU = 5.5 # All nodes have alpha-shaped postsynaptic current with tau=5.5
# Parameters/variables used in GLIF3 neuron class
param_names = [x for x in GLIF3.get_param_names()]
var_names = [x.name for x in GLIF3.get_vars()]
### Create base model ###
with open(SIM_CONFIG_PATH) as f:
sim_config = json.load(f)
# model = pygenn.genn_model.GeNNModel(backend="CUDA", preference_kwargs=["generateEmptyStatePushPull=False", "generateExtraGlobalParamPull=False"])
model = pygenn.genn_model.GeNNModel(
backend="CUDA", generateEmptyStatePushPull=False, generateExtraGlobalParamPull=False
)
DT = sim_config["run"]["dt"]
model.dT = DT
model._model.set_merge_postsynaptic_models(True)
model._model.set_default_narrow_sparse_ind_enabled(True)
# model.default_var_location = pygenn.genn_model.genn_wrapper.VarLocation_DEVICE
# model.default_sparse_connectivity_location = pygenn.genn_model.genn_wrapper.VarLocation_DEVICE
### Add Neuron Populations ###
pop_dict = {}
### V1
# Add data to dataframe
v1_nodes_df_path = Path("./pkl_data/v1_nodes_df.pkl")
if v1_nodes_df_path.exists():
v1_nodes_df = load_df(v1_nodes_df_path)
else:
# Construct df from Sonata format
v1_nodes = v1_net.nodes["v1"]
v1_nodes_df = v1_nodes.to_dataframe()
v1_nodes_df = optimize_nodes_df_memory(v1_nodes_df) # reduce memory; makes indexing faster
# Add columns of new data
v1_nodes_df["GeNN_node_id"] = 0 # Preallocate as int
v1_nodes_df["refractory_countdown"] = 0 # Preallocate as int
v1_nodes_df["spike_cut_length"] = 0 # Preallocate as int
for node_type_id in v1_nodes_df["node_type_id"].unique():
# Dynamics params
dynamics_file = v1_nodes_df.loc[v1_nodes_df["node_type_id"] == node_type_id]["dynamics_params"].iloc[0]
dynamics_file = dynamics_file.replace("config", "psc")
dynamics_path = Path(DYNAMICS_BASE_DIR, dynamics_file)
dynamics_params_correct_units = get_dynamics_params(dynamics_path, DT)
for pv_name in param_names + var_names:
v1_nodes_df.loc[v1_nodes_df["node_type_id"] == node_type_id, pv_name] = dynamics_params_correct_units[
pv_name
]
# Model name = pop_name + node_type_id
pop_name = v1_nodes_df[v1_nodes_df["node_type_id"] == node_type_id]["pop_name"].iloc[0]
model_name = "{}_{}".format(pop_name, node_type_id)
v1_nodes_df.loc[v1_nodes_df["node_type_id"] == node_type_id, "model_name"] = model_name
# GeNN ID; counts from 0 for each model_name
num_nodes = v1_nodes_df.loc[v1_nodes_df["node_type_id"] == node_type_id].shape[0]
v1_nodes_df.loc[v1_nodes_df["node_type_id"] == node_type_id, "GeNN_node_id"] = np.arange(num_nodes).astype(
"int"
)
# Reduce memory by dropping columns / downcasting variable types
v1_nodes_df = optimize_nodes_df_memory(v1_nodes_df)
# Save as pkl so can be reloaded faster
save_df(v1_nodes_df, v1_nodes_df_path)
# Add V1 nodes as neuron populations (111 node types / model_names)
for model_name in v1_nodes_df["model_name"].unique():
# Get data from nodes with this model_name
subset_df = v1_nodes_df[v1_nodes_df["model_name"] == model_name]
params = {k: subset_df[k].to_list()[0] for k in param_names}
init = {k: subset_df[k].to_list()[0] for k in var_names}
num_neurons = len(subset_df)
pop_dict[model_name] = model.add_neuron_population(
pop_name=model_name,
num_neurons=num_neurons,
neuron=GLIF3,
param_space=params,
var_space=init,
)
# Enable spike recording
pop_dict[model_name].spike_recording_enabled = True
print("Added population: {}.".format(model_name))
### Add synapses ###
syn_dict = {}
# V1 to V1 synapses
v1_edges_df_path = Path("./pkl_data/v1_edges_df.pkl")
if v1_edges_df_path.exists():
v1_edges_df = load_df(v1_edges_df_path)
else:
# Load as dataframe
v1_edges = v1_net.edges["v1_to_v1"]
v1_edges_df = v1_edges.groups[0].to_dataframe()
edges_df = v1_edges_df
edges_df = optimize_edges_df_memory(edges_df)
# Add ID's for GeNN (0-num_neurons in each population)
edges_df["source_GeNN_id"] = v1_nodes_df["GeNN_node_id"].iloc[edges_df["source_node_id"]].astype("int32").tolist()
edges_df["target_GeNN_id"] = (
v1_nodes_df["GeNN_node_id"].iloc[v1_edges_df["target_node_id"]].astype("int32").tolist()
)
edges_df["source_model_name"] = v1_nodes_df["model_name"].iloc[edges_df["source_node_id"]].tolist()
edges_df["target_model_name"] = v1_nodes_df["model_name"].iloc[edges_df["target_node_id"]].tolist()
# Add product of nsyns and syn_weight
edges_df["nsyns_x_syn_weight"] = edges_df["nsyns"] * edges_df["syn_weight"]
# Reduce memory
edges_df = optimize_edges_df_memory(edges_df)
# Save as pickle for faster loading
save_df(edges_df, v1_edges_df_path)
# List of all population pairs
source_target_pairs = (
v1_edges_df.drop_duplicates(subset=["source_model_name", "target_model_name"])
.loc[:, ("source_model_name", "target_model_name")]
.to_numpy()
)
# Iterate through population pairs
num_pairs = len(source_target_pairs)
count = 0
for i, (pop1, pop2) in enumerate(source_target_pairs):
# Progress bar
if i % 10 == 0:
print(
"Adding synapse groups... {}% ".format(np.round(100 * i / num_pairs, 2)),
end="\r",
)
# Load source_target df if previously saved
synapse_group_name = pop1 + "_to_" + pop2
synapse_group_path = Path("./pkl_data", "source_target_df", synapse_group_name, ".pkl")
if synapse_group_path.exists():
source_target = load_df(synapse_group_path)
else:
source_target = v1_edges_df[
(v1_edges_df["source_model_name"] == pop1) & (v1_edges_df["target_model_name"] == pop2)
]
save_df(source_target, synapse_group_path)
# GeNN weight = product of syn_weight and number of synapses
weight = (source_target["nsyns_x_syn_weight"] / 1e3).to_list() # pA -> nA
# Delay
delay_ms = source_target["delay"]
delay_steps = round((delay_ms / DT)).astype("int").to_list()
assert len(delay_ms.unique()) == 1
delay_steps = delay_steps[0]
# Get list of source and target node ids (GeNN numbering)
s_list = source_target[source_target["source_model_name"] == pop1]["source_GeNN_id"].tolist()
t_list = source_target[source_target["target_model_name"] == pop2]["target_GeNN_id"].tolist()
# Weight update model
s_ini = {"g": weight, "d": delay_steps} # , "d": delay_steps}
# Postsynaptic current model
psc_Alpha_params = {"tau": ALPHA_TAU}
psc_Alpha_init = {"x": 0.0}
# Add synapse population
syn_dict[synapse_group_name] = model.add_synapse_population(
pop_name=synapse_group_name,
matrix_type="SPARSE_INDIVIDUALG",
delay_steps=delay_steps,
source=pop1,
target=pop2,
w_update_model="StaticPulseDendriticDelay",
wu_param_space={},
wu_var_space=s_ini,
wu_pre_var_space={},
wu_post_var_space={},
postsyn_model=psc_Alpha,
ps_param_space=psc_Alpha_params,
ps_var_space=psc_Alpha_init,
)
# syn_dict[synapse_group_name].pop.set_max_dendritic_delay_timesteps(
# max_dendritic_delay_slots
# )
syn_dict[synapse_group_name].set_sparse_connections(np.array(s_list), np.array(t_list))
print("Added all {} synapse groups. ".format(i))
### Run simulation
import time
start = time.time()
model.build(force_rebuild=False)
stop = time.time()
print("Duration = {}s".format(stop - start))
model.load(num_recording_timesteps=NUM_RECORDING_TIMESTEPS) # TODO: How big to calculate for GPU size?
for i in range(num_steps):
model.step_time()
# Only collect full BUFFER
if i % NUM_RECORDING_TIMESTEPS == 0 and i != 0:
print(i)