forked from hli1221/imagefusion_densefuse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_recons.py
167 lines (129 loc) · 7.49 KB
/
train_recons.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Train the DenseFuse Net
from __future__ import print_function
import scipy.io as scio
import numpy as np
import tensorflow as tf
from ssim_loss_function import SSIM_LOSS
from densefuse_net import DenseFuseNet
from utils import get_train_images, get_train_images_rgb
STYLE_LAYERS = ('relu1_1', 'relu2_1', 'relu3_1', 'relu4_1')
HEIGHT = 256
WIDTH = 256
CHANNELS = 1 # gray scale, default
LEARNING_RATE = 1e-4
EPSILON = 1e-5
def train_recons(original_imgs_path, validatioin_imgs_path, save_path, model_pre_path, ssim_weight, EPOCHES_set, BATCH_SIZE, IS_Validation, debug=False, logging_period=1):
if debug:
from datetime import datetime
start_time = datetime.now()
EPOCHS = EPOCHES_set
print("EPOCHES : ", EPOCHS)
print("BATCH_SIZE: ", BATCH_SIZE)
num_val = len(validatioin_imgs_path)
num_imgs = len(original_imgs_path)
# num_imgs = 100
original_imgs_path = original_imgs_path[:num_imgs]
mod = num_imgs % BATCH_SIZE
print('Train images number %d.\n' % num_imgs)
print('Train images samples %s.\n' % str(num_imgs / BATCH_SIZE))
if mod > 0:
print('Train set has been trimmed %d samples...\n' % mod)
original_imgs_path = original_imgs_path[:-mod]
# get the traing image shape
INPUT_SHAPE_OR = (BATCH_SIZE, HEIGHT, WIDTH, CHANNELS)
# create the graph
with tf.Graph().as_default(), tf.Session() as sess:
original = tf.placeholder(tf.float32, shape=INPUT_SHAPE_OR, name='original')
source = original
print('source :', source.shape)
print('original:', original.shape)
# create the deepfuse net (encoder and decoder)
dfn = DenseFuseNet(model_pre_path)
generated_img = dfn.transform_recons(source)
print('generate:', generated_img.shape)
ssim_loss_value = SSIM_LOSS(original, generated_img)
pixel_loss = tf.reduce_sum(tf.square(original - generated_img))
pixel_loss = pixel_loss/(BATCH_SIZE*HEIGHT*WIDTH)
ssim_loss = 1 - ssim_loss_value
loss = ssim_weight*ssim_loss + pixel_loss
train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(loss)
sess.run(tf.global_variables_initializer())
# saver = tf.train.Saver()
saver = tf.train.Saver(keep_checkpoint_every_n_hours=1)
# ** Start Training **
step = 0
count_loss = 0
n_batches = int(len(original_imgs_path) // BATCH_SIZE)
val_batches = int(len(validatioin_imgs_path) // BATCH_SIZE)
if debug:
elapsed_time = datetime.now() - start_time
print('\nElapsed time for preprocessing before actually train the model: %s' % elapsed_time)
print('Now begin to train the model...\n')
start_time = datetime.now()
Loss_all = [i for i in range(EPOCHS * n_batches)]
Loss_ssim = [i for i in range(EPOCHS * n_batches)]
Loss_pixel = [i for i in range(EPOCHS * n_batches)]
Val_ssim_data = [i for i in range(EPOCHS * n_batches)]
Val_pixel_data = [i for i in range(EPOCHS * n_batches)]
for epoch in range(EPOCHS):
np.random.shuffle(original_imgs_path)
for batch in range(n_batches):
# retrive a batch of content and style images
original_path = original_imgs_path[batch*BATCH_SIZE:(batch*BATCH_SIZE + BATCH_SIZE)]
### read gray scale images
original_batch = get_train_images(original_path, crop_height=HEIGHT, crop_width=WIDTH, flag=False)
### read RGB images
# original_batch = get_train_images_rgb(original_path, crop_height=HEIGHT, crop_width=WIDTH, flag=False)
original_batch = original_batch.transpose((3, 0, 1, 2))
# print('original_batch shape final:', original_batch.shape)
# run the training step
sess.run(train_op, feed_dict={original: original_batch})
step += 1
if debug:
is_last_step = (epoch == EPOCHS - 1) and (batch == n_batches - 1)
if is_last_step or step % logging_period == 0:
elapsed_time = datetime.now() - start_time
_ssim_loss, _loss, _p_loss = sess.run([ssim_loss, loss, pixel_loss], feed_dict={original: original_batch})
Loss_all[count_loss] = _loss
Loss_ssim[count_loss] = _ssim_loss
Loss_pixel[count_loss] = _p_loss
print('epoch: %d/%d, step: %d, total loss: %s, elapsed time: %s' % (epoch, EPOCHS, step, _loss, elapsed_time))
print('p_loss: %s, ssim_loss: %s ,w_ssim_loss: %s ' % (_p_loss, _ssim_loss, ssim_weight * _ssim_loss))
# IS_Validation = True;
# Calculating the accuracy rate for 1000 images, every 100 steps
if IS_Validation:
val_ssim_acc = 0
val_pixel_acc = 0
np.random.shuffle(validatioin_imgs_path)
val_start_time = datetime.now()
for v in range(val_batches):
val_original_path = validatioin_imgs_path[v * BATCH_SIZE:(v * BATCH_SIZE + BATCH_SIZE)]
val_original_batch = get_train_images(val_original_path, crop_height=HEIGHT, crop_width=WIDTH,flag=False)
val_original_batch = val_original_batch.reshape([BATCH_SIZE, 256, 256, 1])
val_ssim, val_pixel = sess.run([ssim_loss, pixel_loss], feed_dict={original: val_original_batch})
val_ssim_acc = val_ssim_acc + (1 - val_ssim)
val_pixel_acc = val_pixel_acc + val_pixel
Val_ssim_data[count_loss] = val_ssim_acc/val_batches
Val_pixel_data[count_loss] = val_pixel_acc / val_batches
val_es_time = datetime.now() - val_start_time
print('validation value, SSIM: %s, Pixel: %s, elapsed time: %s' % (val_ssim_acc/val_batches, val_pixel_acc / val_batches, val_es_time))
print('------------------------------------------------------------------------------')
count_loss += 1
# ** Done Training & Save the model **
saver.save(sess, save_path)
loss_data = Loss_all[:count_loss]
scio.savemat('./models/loss/DeepDenseLossData'+str(ssim_weight)+'.mat',{'loss':loss_data})
loss_ssim_data = Loss_ssim[:count_loss]
scio.savemat('./models/loss/DeepDenseLossSSIMData'+str(ssim_weight)+'.mat', {'loss_ssim': loss_ssim_data})
loss_pixel_data = Loss_pixel[:count_loss]
scio.savemat('./models/loss/DeepDenseLossPixelData.mat'+str(ssim_weight)+'', {'loss_pixel': loss_pixel_data})
# IS_Validation = True;
if IS_Validation:
validation_ssim_data = Val_ssim_data[:count_loss]
scio.savemat('./models/val/Validation_ssim_Data.mat' + str(ssim_weight) + '', {'val_ssim': validation_ssim_data})
validation_pixel_data = Val_pixel_data[:count_loss]
scio.savemat('./models/val/Validation_pixel_Data.mat' + str(ssim_weight) + '', {'val_pixel': validation_pixel_data})
if debug:
elapsed_time = datetime.now() - start_time
print('Done training! Elapsed time: %s' % elapsed_time)
print('Model is saved to: %s' % save_path)