-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
49 lines (42 loc) · 1.92 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import time
from data.data_loader import get_data_loader
from models.models import create_model
from option_parser import TrainingOptionParser
from utils.visualizer import Visualizer
import torch
parser = TrainingOptionParser()
opt = parser.parse_args()
data_loader = get_data_loader(opt)
print("[INFO] small batch size : {}".format(opt.small_batch_size))
print("[INFO] large batch size : {}".format(opt.large_batch_size))
print("[INFO] total batch size : {}".format(opt.large_batch_size * opt.small_batch_size))
model = create_model(opt)
visualizer = Visualizer(opt)
max_int = 999999999
large_batch_clock = time.time()
validated_before = list()
for _ in range(max_int):
for i, data in enumerate(data_loader):
# data : dict
small_batch_clock = time.time()
one_hot_labels = torch.zeros(opt.small_batch_size, opt.label_size, out=torch.LongTensor())
for j, n in enumerate(data['label']):
one_hot_labels[j][n.long().data-1] = 1
data['label'] = one_hot_labels
model.set_input(data)
model.optimize_parameters()
if opt.print_small_batch:
error = model.get_loss()
time_delta = time.time() - small_batch_clock
visualizer.print_current_errors(model.large_batch_epoch, model.small_batch_count, error, time_delta)
if model.small_batch_count % opt.large_batch_size == 0 and model.large_batch_epoch > 0:
error = model.get_loss()
time_delta = time.time() - large_batch_clock
visualizer.print_current_errors(model.large_batch_epoch, model.small_batch_count, error, time_delta)
visualizer.plot_current_error(model.large_batch_epoch, 0, error)
large_batch_clock = time.time()
if model.lr_scheduler is not None:
model.lr_scheduler.step()
model.save(model.large_batch_epoch)
if model.large_batch_epoch >= opt.large_batch_epoch:
exit(0)