-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess_ko.py
80 lines (80 loc) · 3.28 KB
/
preprocess_ko.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import random
import time
import numpy as np
import pandas as pd
import os
import argparse
import re
import multiprocessing as mp
from tqdm import tqdm
import pdb
# def define_argparser():
# parser = argparse.ArgumentParser()
# parser.add_argument('-ts', '--test_size', type=int, default=2000, help='Number of test data size')
# args = parser.parse_args()
# return args
if __name__ == '__main__':
# args = define_argparser()
# test_size = args.test_size
# read excel files
print('Reading excels ... ')
excel_names = os.listdir('paired')
excel_names = [f for f in excel_names if '.xlsx' in f]
[print(f) for f in excel_names]
print()
dest_path = os.path.join('..', 'raw_koen')
for i, file_name in enumerate(excel_names):
if '조례' in file_name:
domain = 'law'
else:
raise 'Invalid domain'
print('Domain:', domain)
file = pd.read_excel(os.path.join('paired', file_name))
data_ko = file['원문'].values
# test_ko = data_ko[:test_size]
# dev_ko = data_ko[test_size:2*test_size]
# train_ko = data_ko[2*test_size:]
lang = 'ko'
# print(f'Split info ({lang}): {len(test_ko)} {len(dev_ko)} {len(train_ko)}')
# with open(os.path.join(dest_path, f'{domain}-test.{lang}'), 'w', encoding='utf8') as f:
# for line in test_ko:
# f.write(str(line) + '\n')
# with open(os.path.join(dest_path, f'{domain}-dev.{lang}'), 'w', encoding='utf8') as f:
# for line in dev_ko:
# f.write(str(line) + '\n')
# with open(os.path.join(dest_path, f'{domain}-train.{lang}'), 'w', encoding='utf8') as f:
# for line in train_ko:
# f.write(str(line) + '\n')
with open(os.path.join(dest_path, f'{domain}-all.{lang}'), 'w', encoding='utf8') as f:
for line in data_ko:
f.write(str(line) + '\n')
data_en = file['번역문'].values
# test_en = data_en[:test_size]
# dev_en = data_en[test_size:2*test_size]
# train_en = data_en[2*test_size:]
lang = 'en'
# print(f'Split info ({lang}): {len(test_en)} {len(dev_en)} {len(train_en)}')
# with open(os.path.join(dest_path, f'{domain}-test.{lang}'), 'w', encoding='utf8') as f:
# for line in test_en:
# f.write(str(line) + '\n')
# with open(os.path.join(dest_path, f'{domain}-dev.{lang}'), 'w', encoding='utf8') as f:
# for line in dev_en:
# f.write(str(line) + '\n')
# with open(os.path.join(dest_path, f'{domain}-train.{lang}'), 'w', encoding='utf8') as f:
# for line in train_en:
# f.write(str(line) + '\n')
import pdb; pdb.set_trace()
with open(os.path.join(dest_path, f'{domain}-all.{lang}'), 'w', encoding='utf8') as f:
for line in data_en:
f.write(str(line) + '\n')
print(round((i+1)/len(excel_names)*100, 2), '% finished', sep='')
print()
# Reading excels ...
# 5_문어체_조례_200226.xlsx
# 4_문어체_한국문화_200226.xlsx
# Split info (ko): 2000 2000 96298
# Split info (en): 2000 2000 96298
# 50.0% finished
# Split info (ko): 2000 2000 96646
# Split info (en): 2000 2000 96646
# 100.0% finished