We show the implementation details of all experiments in the page.
We use the same batch size for all FL methods in each dataset.
Dataset | batch size |
---|---|
eICU | 256 |
skin cancer | 128 |
ECG | 64 |
We utilized the grid search map used in the existing papers(FedProx, FedOpt, FedDyn).
- learning rate (
$\eta$ )- := [0.1, 0.01, 0.001, 0.0001] (FedAvg, FedProx, FedBn, FedPxN, FedDyn)
- := [0.1, 0.03, 0.01, 0.003, 0.001, 0.0001] (FedAdam, FedAdagrad, FedYogi)
- mu (
$\mu$ ) := [1.0, 0.1, 0.01, 0.001, 0.0001] - feddyn alpha (
$\alpha$ ) := [0.0001, 0.001, 0.01, 0.1] - server learning rate (
$\eta_{g}$ ) := [0.1, 0.03, 0.01, 0.003, 0.001, 0.0001] - tau (
$\gamma$ ) := [0.0001, 0.001, 0.01, 0.1]
For the grid search, we used 10% of total data in skin cancer & ECG and the data of 5 largest clients in eICU. You can check the used hyperparameters in the links below.