-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
85 lines (57 loc) · 2.25 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
import numpy as np
from res2net_v1b import res2net50_v1b
from data_produce import data
from dataloader import VOC_data
import warnings
warnings.filterwarnings('ignore')
device = torch.device('cuda:0')
trains = data()
trainset = VOC_data(trains)
trainloader = DataLoader(trainset, batch_size=16, shuffle=True, num_workers=4, pin_memory=True)
if __name__ == '__main__':
writer = SummaryWriter('runs/res2net')
dummy_input = torch.rand(1, 3, 224, 224)
net = res2net50_v1b(pretrained=False)
net.load_state_dict(torch.load('output/res2net50_v1b_26w_4s-3cf99910.pth'), strict=False)
print(np.sum([p.numel() for p in net.parameters()]).item())
writer.add_graph(net, (dummy_input,))
net.to(device)
net.train()
#loss = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=0.001)
#CosineLR = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=150, eta_min=0)
train_num = 0
test_num = 0
train_loss = 0
test_loss = 0
for epoch in range(0, 30):
print('epoch: ' + str(epoch))
if epoch == 20:
for p in optimizer.param_groups:
p['lr'] *= 0.1
for i, data in enumerate(trainloader):
length = len(trainloader)
optimizer.zero_grad()
inputs, labels, img_name= data
inputs = inputs.to(device)
labels = labels.to(device)
preds = net(inputs)
#all_loss = loss(preds, labels)
all_loss = (labels * (-torch.log(preds))).sum() / len(preds)
all_loss = all_loss.mean()
all_loss.backward()
optimizer.step()
print("training step {}: ".format(i), all_loss.item())
train_loss += all_loss.item()
if (i + 1) % 30 == 0:
writer.add_scalar('training loss',
train_loss / 30,
i + epoch * length)
train_loss = 0
if epoch > 0:
torch.save(net.state_dict(), 'output/{}_params.pkl'.format(epoch))