forked from apache/spark
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Some more partial work towards sort-based shuffle
- Loading branch information
Showing
5 changed files
with
457 additions
and
40 deletions.
There are no files selected for viewing
39 changes: 0 additions & 39 deletions
39
core/src/main/scala/org/apache/spark/shuffle/sort/SortedFileWriter.scala
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
267 changes: 267 additions & 0 deletions
267
core/src/main/scala/org/apache/spark/util/collection/ExternalSorter.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,267 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.util.collection | ||
|
||
import org.apache.spark.{SparkEnv, Aggregator, Logging, Partitioner} | ||
import org.apache.spark.serializer.Serializer | ||
|
||
import scala.collection.mutable.ArrayBuffer | ||
import org.apache.spark.storage.BlockId | ||
import java.io.File | ||
|
||
/** | ||
* Sorts and potentially merges a number of key-value pairs of type (K, V) to produce key-combiner | ||
* pairs of type (K, C). Uses a Partitioner to first group the keys into partitions, and then | ||
* optionally sorts keys within each partition using a custom Comparator. Can output a single | ||
* partitioned file with a different byte range for each partition, suitable for shuffle fetches. | ||
* | ||
* If combining is disabled, the type C must equal V -- we'll cast the objects at the end. | ||
* | ||
* @param aggregator optional Aggregator with combine functions to use for merging data | ||
* @param partitioner optional partitioner; if given, sort by partition ID and then key | ||
* @param ordering optional ordering to sort keys within each partition | ||
* @param serializer serializer to use | ||
*/ | ||
private[spark] class ExternalSorter[K, V, C]( | ||
aggregator: Option[Aggregator[K, V, C]] = None, | ||
partitioner: Option[Partitioner] = None, | ||
ordering: Option[Ordering[K]] = None, | ||
serializer: Option[Serializer] = None) extends Logging { | ||
|
||
private val numPartitions = partitioner.map(_.numPartitions).getOrElse(1) | ||
private val shouldPartition = numPartitions > 1 | ||
|
||
private val blockManager = SparkEnv.get.blockManager | ||
private val diskBlockManager = blockManager.diskBlockManager | ||
private val ser = Serializer.getSerializer(serializer.getOrElse(null)) | ||
|
||
private val conf = SparkEnv.get.conf | ||
private val fileBufferSize = conf.getInt("spark.shuffle.file.buffer.kb", 100) * 1024 | ||
private val serializerBatchSize = conf.getLong("spark.shuffle.spill.batchSize", 10000) | ||
|
||
private def getPartition(key: K): Int = { | ||
if (shouldPartition) partitioner.get.getPartition(key) else 0 | ||
} | ||
|
||
// Data structures to store in-memory objects before we spill. Depending on whether we have an | ||
// Aggregator set, we either put objects into an AppendOnlyMap where we combine them, or we | ||
// store them in an array buffer. | ||
// TODO: Would prefer to have an ArrayBuffer[Any] that we sort pairs of adjacent elements in. | ||
var map = new SizeTrackingAppendOnlyMap[(Int, K), C] | ||
var buffer = new SizeTrackingBuffer[((Int, K), C)] | ||
|
||
// Track how many elements we've read before we try to estimate memory. Ideally we'd use | ||
// map.size or buffer.size for this, but because users' Aggregators can potentially increase | ||
// the size of a merged element when we add values with the same key, it's safer to track | ||
// elements read from the input iterator. | ||
private var elementsRead = 0L | ||
private val trackMemoryThreshold = 1000 | ||
|
||
// Spilling statistics | ||
private var spillCount = 0 | ||
private var _memoryBytesSpilled = 0L | ||
private var _diskBytesSpilled = 0L | ||
|
||
// Collective memory threshold shared across all running tasks | ||
private val maxMemoryThreshold = { | ||
val memoryFraction = conf.getDouble("spark.shuffle.memoryFraction", 0.3) | ||
val safetyFraction = conf.getDouble("spark.shuffle.safetyFraction", 0.8) | ||
(Runtime.getRuntime.maxMemory * memoryFraction * safetyFraction).toLong | ||
} | ||
|
||
// Information about a spilled file. Includes sizes in bytes of "batches" written by the | ||
// serializer as we periodically reset its stream, as well as number of elements in each | ||
// partition, used to efficiently keep track of partitions when merging. | ||
private case class SpilledFile( | ||
file: File, | ||
blockId: BlockId, | ||
serializerBatchSizes: ArrayBuffer[Long], | ||
elementsPerPartition: Array[Long]) | ||
private val spills = new ArrayBuffer[SpilledFile] | ||
|
||
def write(records: Iterator[_ <: Product2[K, V]]): Unit = { | ||
// TODO: stop combining if we find that the reduction factor isn't high | ||
val shouldCombine = aggregator.isDefined | ||
|
||
if (shouldCombine) { | ||
// Combine values in-memory first using our AppendOnlyMap | ||
val mergeValue = aggregator.get.mergeValue | ||
val createCombiner = aggregator.get.createCombiner | ||
var kv: Product2[K, V] = null | ||
val update = (hadValue: Boolean, oldValue: C) => { | ||
if (hadValue) mergeValue(oldValue, kv._2) else createCombiner(kv._2) | ||
} | ||
while (records.hasNext) { | ||
elementsRead += 1 | ||
kv = records.next() | ||
map.changeValue((getPartition(kv._1), kv._1), update) | ||
maybeSpill(usingMap = true) | ||
} | ||
} else { | ||
// Stick values into our buffer | ||
while (records.hasNext) { | ||
elementsRead += 1 | ||
val kv = records.next() | ||
buffer += (((getPartition(kv._1), kv._1), kv._2.asInstanceOf[C])) | ||
maybeSpill(usingMap = false) | ||
} | ||
} | ||
} | ||
|
||
private def maybeSpill(usingMap: Boolean): Unit = { | ||
val collection: SizeTrackingCollection[((Int, K), C)] = if (usingMap) map else buffer | ||
|
||
if (elementsRead > trackMemoryThreshold && collection.atGrowThreshold) { | ||
// TODO: This is code from ExternalAppendOnlyMap that doesn't work if there are two external | ||
// collections being used in the same task. However we'll just copy it for now. | ||
|
||
val currentSize = collection.estimateSize() | ||
var shouldSpill = false | ||
val shuffleMemoryMap = SparkEnv.get.shuffleMemoryMap | ||
|
||
// Atomically check whether there is sufficient memory in the global pool for | ||
// this map to grow and, if possible, allocate the required amount | ||
shuffleMemoryMap.synchronized { | ||
val threadId = Thread.currentThread().getId | ||
val previouslyOccupiedMemory = shuffleMemoryMap.get(threadId) | ||
val availableMemory = maxMemoryThreshold - | ||
(shuffleMemoryMap.values.sum - previouslyOccupiedMemory.getOrElse(0L)) | ||
|
||
// Assume map growth factor is 2x | ||
shouldSpill = availableMemory < currentSize * 2 | ||
if (!shouldSpill) { | ||
shuffleMemoryMap(threadId) = currentSize * 2 | ||
} | ||
} | ||
// Do not synchronize spills | ||
if (shouldSpill) { | ||
spill(currentSize, usingMap) | ||
} | ||
} | ||
} | ||
|
||
/** | ||
* Spill the current in-memory collection to disk, adding a new file to spills, and clear it. | ||
* | ||
* @param usingMap whether we're using a map or buffer as our current in-memory collection | ||
*/ | ||
def spill(memorySize: Long, usingMap: Boolean): Unit = { | ||
val collection: SizeTrackingCollection[((Int, K), C)] = if (usingMap) map else buffer | ||
val memorySize = collection.estimateSize() | ||
|
||
spillCount += 1 | ||
logWarning("Spilling in-memory batch of %d MB to disk (%d spill%s so far)" | ||
.format(memorySize / (1024 * 1024), spillCount, if (spillCount > 1) "s" else "")) | ||
val (blockId, file) = diskBlockManager.createTempBlock() | ||
var writer = blockManager.getDiskWriter(blockId, file, ser, fileBufferSize) | ||
var objectsWritten = 0 | ||
|
||
// List of batch sizes (bytes) in the order they are written to disk | ||
val batchSizes = new ArrayBuffer[Long] | ||
|
||
// How many elements we have in each partition | ||
// TODO: this should become a sparser data structure | ||
val elementsPerPartition = new Array[Long](numPartitions) | ||
|
||
// Flush the disk writer's contents to disk, and update relevant variables | ||
def flush() = { | ||
writer.commit() | ||
val bytesWritten = writer.bytesWritten | ||
batchSizes.append(bytesWritten) | ||
_diskBytesSpilled += bytesWritten | ||
objectsWritten = 0 | ||
} | ||
|
||
try { | ||
val it = collection.iterator // TODO: destructiveSortedIterator(comparator) | ||
while (it.hasNext) { | ||
val elem = it.next() | ||
val partitionId = elem._1._1 | ||
val key = elem._1._2 | ||
val value = elem._2 | ||
writer.write(key) | ||
writer.write(value) | ||
elementsPerPartition(partitionId) += 1 | ||
objectsWritten += 1 | ||
|
||
if (objectsWritten == serializerBatchSize) { | ||
flush() | ||
writer.close() | ||
writer = blockManager.getDiskWriter(blockId, file, ser, fileBufferSize) | ||
} | ||
} | ||
if (objectsWritten > 0) { | ||
flush() | ||
} | ||
} finally { | ||
// Partial failures cannot be tolerated; do not revert partial writes | ||
writer.close() | ||
} | ||
|
||
if (usingMap) { | ||
map = new SizeTrackingAppendOnlyMap[(Int, K), C] | ||
} else { | ||
buffer = new SizeTrackingBuffer[((Int, K), C)] | ||
} | ||
|
||
spills.append(SpilledFile(file, blockId, batchSizes, elementsPerPartition)) | ||
_memoryBytesSpilled += memorySize | ||
} | ||
|
||
/** | ||
* Merge a sequence of sorted files, giving an iterator over partitions and then over elements | ||
* inside each partition. This can be used to either write out a new file or return data to | ||
* the user. | ||
*/ | ||
def merge(spills: Seq[SpilledFile]): Iterator[(Int, Iterator[Product2[K, C]])] = { | ||
// TODO: merge intermediate results if they are sorted by the comparator | ||
val readers = spills.map(new SpillReader(_)) | ||
(0 until numPartitions).iterator.map { p => | ||
(p, readers.iterator.flatMap(_.readPartition(p))) | ||
} | ||
} | ||
|
||
/** | ||
* An internal class for reading a spilled file partition by partition. Expects all the | ||
* partitions to be requested in order. | ||
*/ | ||
private class SpillReader(spill: SpilledFile) { | ||
def readPartition(id: Int): Iterator[Product2[K, C]] = ??? | ||
} | ||
|
||
/** | ||
* Return an iterator over all the data written to this object, grouped by partition. For each | ||
* partition we then have an iterator over its contents, and these are expected to be accessed | ||
* in order (you can't "skip ahead" to one partition without reading the previous one). | ||
* | ||
* For now, we just merge all the spilled files in once pass, but this can be modified to | ||
* support hierarchical merging. | ||
*/ | ||
def partitionedIterator: Iterator[(Int, Iterator[Product2[K, C]])] = merge(spills) | ||
|
||
/** | ||
* Return an iterator over all the data written to this object. | ||
*/ | ||
def iterator: Iterator[Product2[K, C]] = partitionedIterator.flatMap(pair => pair._2) | ||
|
||
def stop(): Unit = ??? | ||
|
||
def memoryBytesSpilled: Long = _memoryBytesSpilled | ||
|
||
def diskBytesSpilled: Long = _diskBytesSpilled | ||
} |
Oops, something went wrong.