Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Converting v1 tiny-yolo fails #24

Open
victorv opened this issue Mar 28, 2017 · 13 comments
Open

Converting v1 tiny-yolo fails #24

victorv opened this issue Mar 28, 2017 · 13 comments

Comments

@victorv
Copy link

victorv commented Mar 28, 2017

Hi, thanks for the cool tools. Looking to try this out but the scripts cannot convert v1 models for me.

python create_yolo_caffemodel.py -m prototxt/yolo_tiny_train_val.prototxt -w tiny-yolo.weights -o tiny-yolo.caffemodel

yields

conv8_y(conv)
bn8(batchnorm)
scale8(scale)
fc9(fc)
Traceback (most recent call last):
File "create_yolo_caffemodel.py", line 106, in
main(sys.argv[1:])
File "create_yolo_caffemodel.py", line 85, in main
net.params[pr][0].data[...] = np.reshape(netWeights[count:count+weightSize], dims)
File "/usr/local/lib/python2.7/site-packages/numpy-1.11.0-py2.7-macosx-10.9-x86_64.egg/numpy/core/fromnumeric.py", line 225, in reshape
return reshape(newshape, order=order)
ValueError: total size of new array must be unchanged

Probably the train_val in the repository does not match the weights model downloaded from the yolo website using wget http://pjreddie.com/media/files/tiny-yolo.weights

Question is where do I find the train_val for the tiny-yolo model?

Thanks.

@iqedgarmg
Copy link

I have the same problem, I checked both models but everything looks fine. I think that the problem is the last layer "detection" of the .cfg structure.

@zhan-xu
Copy link

zhan-xu commented Apr 15, 2017

You should use this cfg: darknet/cfg/tiny.cfg
and this weights: http://pjreddie.com/media/files/tiny.weights

@victorv
Copy link
Author

victorv commented Apr 16, 2017

@enderhsu - thanks. It got a bit farther now.

I am using a newer version of caffe. I will investigate.

python create_yolo_caffemodel.py -m prototxt/yolo_tiny_train_val.prototxt -w tiny-yolo.weights -o tiny-yolo.caffemodel

[('-m', 'prototxt/yolo_tiny_train_val.prototxt'), ('-w', 'tiny-yolo.weights'), ('-o', 'tiny-yolo.caffemodel')]
model file is prototxt/yolo_tiny_train_val.prototxt
weight file is tiny-yolo.weights
output caffemodel file is tiny-yolo.caffemodel
WARNING: Logging before InitGoogleLogging() is written to STDERR
I0415 19:32:59.547441 1958055936 upgrade_proto.cpp:67] Attempting to upgrade input file specified using deprecated input fields: prototxt/yolo_tiny_train_val.prototxt
I0415 19:32:59.547847 1958055936 upgrade_proto.cpp:70] Successfully upgraded file specified using deprecated input fields.
W0415 19:32:59.547869 1958055936 upgrade_proto.cpp:72] Note that future Caffe releases will only support input layers and not input fields.
I0415 19:32:59.547874 1958055936 upgrade_proto.cpp:77] Attempting to upgrade batch norm layers using deprecated params: prototxt/yolo_tiny_train_val.prototxt
I0415 19:32:59.547881 1958055936 upgrade_proto.cpp:80] Successfully upgraded batch norm layers using deprecated params.
I0415 19:33:00.901940 1958055936 net.cpp:298] The NetState phase (1) differed from the phase (0) specified by a rule in layer bn1
I0415 19:33:00.901985 1958055936 net.cpp:298] The NetState phase (1) differed from the phase (0) specified by a rule in layer bn2
I0415 19:33:00.901998 1958055936 net.cpp:298] The NetState phase (1) differed from the phase (0) specified by a rule in layer bn3
I0415 19:33:00.902009 1958055936 net.cpp:298] The NetState phase (1) differed from the phase (0) specified by a rule in layer bn4
I0415 19:33:00.902020 1958055936 net.cpp:298] The NetState phase (1) differed from the phase (0) specified by a rule in layer bn5
I0415 19:33:00.902030 1958055936 net.cpp:298] The NetState phase (1) differed from the phase (0) specified by a rule in layer bn6
I0415 19:33:00.902040 1958055936 net.cpp:298] The NetState phase (1) differed from the phase (0) specified by a rule in layer bn7
I0415 19:33:00.902050 1958055936 net.cpp:298] The NetState phase (1) differed from the phase (0) specified by a rule in layer bn8
I0415 19:33:00.902062 1958055936 net.cpp:55] Initializing net from parameters:
name: "YOLONet"
state {
phase: TEST
level: 0
}
layer {
name: "input"
type: "Input"
top: "data"
input_param {
shape {
dim: 1
dim: 3
dim: 448
dim: 448
}
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 16
bias_term: false
pad: 1
kernel_size: 3
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn1"
type: "BatchNorm"
bottom: "conv1"
top: "bn1"
include {
phase: TEST
}
batch_norm_param {
use_global_stats: true
}
}
layer {
name: "scale1"
type: "Scale"
bottom: "bn1"
top: "scale1"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "scale1"
top: "scale1"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "scale1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 32
bias_term: false
pad: 1
kernel_size: 3
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn2"
type: "BatchNorm"
bottom: "conv2"
top: "bn2"
include {
phase: TEST
}
batch_norm_param {
use_global_stats: true
}
}
layer {
name: "scale2"
type: "Scale"
bottom: "bn2"
top: "scale2"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "scale2"
top: "scale2"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "scale2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 64
bias_term: false
pad: 1
kernel_size: 3
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn3"
type: "BatchNorm"
bottom: "conv3"
top: "bn3"
include {
phase: TEST
}
batch_norm_param {
use_global_stats: true
}
}
layer {
name: "scale3"
type: "Scale"
bottom: "bn3"
top: "scale3"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "scale3"
top: "scale3"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "pool3"
type: "Pooling"
bottom: "scale3"
top: "pool3"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv4"
type: "Convolution"
bottom: "pool3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 128
bias_term: false
pad: 1
kernel_size: 3
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn4"
type: "BatchNorm"
bottom: "conv4"
top: "bn4"
include {
phase: TEST
}
batch_norm_param {
use_global_stats: true
}
}
layer {
name: "scale4"
type: "Scale"
bottom: "bn4"
top: "scale4"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "scale4"
top: "scale4"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "pool4"
type: "Pooling"
bottom: "scale4"
top: "pool4"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv5"
type: "Convolution"
bottom: "pool4"
top: "conv5"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn5"
type: "BatchNorm"
bottom: "conv5"
top: "bn5"
include {
phase: TEST
}
batch_norm_param {
use_global_stats: true
}
}
layer {
name: "scale5"
type: "Scale"
bottom: "bn5"
top: "scale5"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "scale5"
top: "scale5"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "pool5"
type: "Pooling"
bottom: "scale5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv6"
type: "Convolution"
bottom: "pool5"
top: "conv6"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 512
bias_term: false
pad: 1
kernel_size: 3
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn6"
type: "BatchNorm"
bottom: "conv6"
top: "bn6"
include {
phase: TEST
}
batch_norm_param {
use_global_stats: true
}
}
layer {
name: "scale6"
type: "Scale"
bottom: "bn6"
top: "scale6"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "scale6"
top: "scale6"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "pool6"
type: "Pooling"
bottom: "scale6"
top: "pool6"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv7"
type: "Convolution"
bottom: "pool6"
top: "conv7"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 1024
bias_term: false
pad: 1
kernel_size: 3
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn7"
type: "BatchNorm"
bottom: "conv7"
top: "bn7"
include {
phase: TEST
}
batch_norm_param {
use_global_stats: true
}
}
layer {
name: "scale7"
type: "Scale"
bottom: "bn7"
top: "scale7"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "scale7"
top: "scale7"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "conv8_y"
type: "Convolution"
bottom: "scale7"
top: "conv8"
param {
lr_mult: 1
decay_mult: 1
}
convolution_param {
num_output: 256
bias_term: false
pad: 1
kernel_size: 3
weight_filler {
type: "xavier"
}
}
}
layer {
name: "bn8"
type: "BatchNorm"
bottom: "conv8"
top: "bn8"
include {
phase: TEST
}
batch_norm_param {
use_global_stats: true
}
}
layer {
name: "scale8"
type: "Scale"
bottom: "bn8"
top: "scale8"
param {
lr_mult: 0
decay_mult: 0
}
param {
lr_mult: 0
decay_mult: 0
}
scale_param {
bias_term: true
}
}
layer {
name: "relu8"
type: "ReLU"
bottom: "scale8"
top: "scale8"
relu_param {
negative_slope: 0.1
}
}
layer {
name: "fc9"
type: "InnerProduct"
bottom: "scale8"
top: "result"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1470
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
I0415 19:33:00.903556 1958055936 layer_factory.hpp:77] Creating layer input
I0415 19:33:00.903575 1958055936 net.cpp:88] Creating Layer input
I0415 19:33:00.903583 1958055936 net.cpp:384] input -> data
I0415 19:33:00.903609 1958055936 net.cpp:126] Setting up input
I0415 19:33:00.903614 1958055936 net.cpp:133] Top shape: 1 3 448 448 (602112)
I0415 19:33:00.903620 1958055936 net.cpp:141] Memory required for data: 2408448
I0415 19:33:00.903697 1958055936 layer_factory.hpp:77] Creating layer conv1
I0415 19:33:00.903712 1958055936 net.cpp:88] Creating Layer conv1
I0415 19:33:00.903717 1958055936 net.cpp:410] conv1 <- data
I0415 19:33:00.903728 1958055936 net.cpp:384] conv1 -> conv1
I0415 19:33:01.658994 1958055936 net.cpp:126] Setting up conv1
I0415 19:33:01.659021 1958055936 net.cpp:133] Top shape: 1 16 448 448 (3211264)
I0415 19:33:01.659029 1958055936 net.cpp:141] Memory required for data: 15253504
I0415 19:33:01.659036 1958055936 layer_factory.hpp:77] Creating layer bn1
I0415 19:33:01.659045 1958055936 net.cpp:88] Creating Layer bn1
I0415 19:33:01.659050 1958055936 net.cpp:410] bn1 <- conv1
I0415 19:33:01.659055 1958055936 net.cpp:384] bn1 -> bn1
I0415 19:33:01.659178 1958055936 net.cpp:126] Setting up bn1
I0415 19:33:01.659184 1958055936 net.cpp:133] Top shape: 1 16 448 448 (3211264)
I0415 19:33:01.659189 1958055936 net.cpp:141] Memory required for data: 28098560
I0415 19:33:01.659196 1958055936 layer_factory.hpp:77] Creating layer scale1
I0415 19:33:01.659202 1958055936 net.cpp:88] Creating Layer scale1
I0415 19:33:01.659206 1958055936 net.cpp:410] scale1 <- bn1
I0415 19:33:01.659210 1958055936 net.cpp:384] scale1 -> scale1
I0415 19:33:01.659221 1958055936 layer_factory.hpp:77] Creating layer scale1
I0415 19:33:01.659952 1958055936 net.cpp:126] Setting up scale1
I0415 19:33:01.659960 1958055936 net.cpp:133] Top shape: 1 16 448 448 (3211264)
I0415 19:33:01.659976 1958055936 net.cpp:141] Memory required for data: 40943616
I0415 19:33:01.659981 1958055936 layer_factory.hpp:77] Creating layer relu1
I0415 19:33:01.659989 1958055936 net.cpp:88] Creating Layer relu1
I0415 19:33:01.659993 1958055936 net.cpp:410] relu1 <- scale1
I0415 19:33:01.659997 1958055936 net.cpp:371] relu1 -> scale1 (in-place)
I0415 19:33:01.660151 1958055936 net.cpp:126] Setting up relu1
I0415 19:33:01.660158 1958055936 net.cpp:133] Top shape: 1 16 448 448 (3211264)
I0415 19:33:01.660174 1958055936 net.cpp:141] Memory required for data: 53788672
I0415 19:33:01.660177 1958055936 layer_factory.hpp:77] Creating layer pool1
I0415 19:33:01.660184 1958055936 net.cpp:88] Creating Layer pool1
I0415 19:33:01.660188 1958055936 net.cpp:410] pool1 <- scale1
I0415 19:33:01.660192 1958055936 net.cpp:384] pool1 -> pool1
I0415 19:33:01.660202 1958055936 net.cpp:126] Setting up pool1
I0415 19:33:01.660207 1958055936 net.cpp:133] Top shape: 1 16 224 224 (802816)
I0415 19:33:01.660210 1958055936 net.cpp:141] Memory required for data: 56999936
I0415 19:33:01.660213 1958055936 layer_factory.hpp:77] Creating layer conv2
I0415 19:33:01.660219 1958055936 net.cpp:88] Creating Layer conv2
I0415 19:33:01.660223 1958055936 net.cpp:410] conv2 <- pool1
I0415 19:33:01.660238 1958055936 net.cpp:384] conv2 -> conv2
I0415 19:33:01.660789 1958055936 net.cpp:126] Setting up conv2
I0415 19:33:01.660799 1958055936 net.cpp:133] Top shape: 1 32 224 224 (1605632)
I0415 19:33:01.660815 1958055936 net.cpp:141] Memory required for data: 63422464
I0415 19:33:01.660820 1958055936 layer_factory.hpp:77] Creating layer bn2
I0415 19:33:01.660826 1958055936 net.cpp:88] Creating Layer bn2
I0415 19:33:01.660830 1958055936 net.cpp:410] bn2 <- conv2
I0415 19:33:01.660835 1958055936 net.cpp:384] bn2 -> bn2
I0415 19:33:01.660881 1958055936 net.cpp:126] Setting up bn2
I0415 19:33:01.660887 1958055936 net.cpp:133] Top shape: 1 32 224 224 (1605632)
I0415 19:33:01.660890 1958055936 net.cpp:141] Memory required for data: 69844992
I0415 19:33:01.660897 1958055936 layer_factory.hpp:77] Creating layer scale2
I0415 19:33:01.660903 1958055936 net.cpp:88] Creating Layer scale2
I0415 19:33:01.660907 1958055936 net.cpp:410] scale2 <- bn2
I0415 19:33:01.660910 1958055936 net.cpp:384] scale2 -> scale2
I0415 19:33:01.660918 1958055936 layer_factory.hpp:77] Creating layer scale2
I0415 19:33:01.661159 1958055936 net.cpp:126] Setting up scale2
I0415 19:33:01.661165 1958055936 net.cpp:133] Top shape: 1 32 224 224 (1605632)
I0415 19:33:01.661180 1958055936 net.cpp:141] Memory required for data: 76267520
I0415 19:33:01.661185 1958055936 layer_factory.hpp:77] Creating layer relu2
I0415 19:33:01.661190 1958055936 net.cpp:88] Creating Layer relu2
I0415 19:33:01.661192 1958055936 net.cpp:410] relu2 <- scale2
I0415 19:33:01.661196 1958055936 net.cpp:371] relu2 -> scale2 (in-place)
I0415 19:33:01.661334 1958055936 net.cpp:126] Setting up relu2
I0415 19:33:01.661340 1958055936 net.cpp:133] Top shape: 1 32 224 224 (1605632)
I0415 19:33:01.661356 1958055936 net.cpp:141] Memory required for data: 82690048
I0415 19:33:01.661360 1958055936 layer_factory.hpp:77] Creating layer pool2
I0415 19:33:01.661365 1958055936 net.cpp:88] Creating Layer pool2
I0415 19:33:01.661368 1958055936 net.cpp:410] pool2 <- scale2
I0415 19:33:01.661372 1958055936 net.cpp:384] pool2 -> pool2
I0415 19:33:01.661381 1958055936 net.cpp:126] Setting up pool2
I0415 19:33:01.661384 1958055936 net.cpp:133] Top shape: 1 32 112 112 (401408)
I0415 19:33:01.661388 1958055936 net.cpp:141] Memory required for data: 84295680
I0415 19:33:01.661392 1958055936 layer_factory.hpp:77] Creating layer conv3
I0415 19:33:01.661397 1958055936 net.cpp:88] Creating Layer conv3
I0415 19:33:01.661401 1958055936 net.cpp:410] conv3 <- pool2
I0415 19:33:01.661415 1958055936 net.cpp:384] conv3 -> conv3
I0415 19:33:01.662611 1958055936 net.cpp:126] Setting up conv3
I0415 19:33:01.662623 1958055936 net.cpp:133] Top shape: 1 64 112 112 (802816)
I0415 19:33:01.662642 1958055936 net.cpp:141] Memory required for data: 87506944
I0415 19:33:01.662657 1958055936 layer_factory.hpp:77] Creating layer bn3
I0415 19:33:01.662662 1958055936 net.cpp:88] Creating Layer bn3
I0415 19:33:01.662665 1958055936 net.cpp:410] bn3 <- conv3
I0415 19:33:01.662670 1958055936 net.cpp:384] bn3 -> bn3
I0415 19:33:01.662716 1958055936 net.cpp:126] Setting up bn3
I0415 19:33:01.662721 1958055936 net.cpp:133] Top shape: 1 64 112 112 (802816)
I0415 19:33:01.662726 1958055936 net.cpp:141] Memory required for data: 90718208
I0415 19:33:01.662731 1958055936 layer_factory.hpp:77] Creating layer scale3
I0415 19:33:01.662737 1958055936 net.cpp:88] Creating Layer scale3
I0415 19:33:01.662741 1958055936 net.cpp:410] scale3 <- bn3
I0415 19:33:01.662745 1958055936 net.cpp:384] scale3 -> scale3
I0415 19:33:01.662752 1958055936 layer_factory.hpp:77] Creating layer scale3
I0415 19:33:01.662834 1958055936 net.cpp:126] Setting up scale3
I0415 19:33:01.662838 1958055936 net.cpp:133] Top shape: 1 64 112 112 (802816)
I0415 19:33:01.662842 1958055936 net.cpp:141] Memory required for data: 93929472
I0415 19:33:01.662849 1958055936 layer_factory.hpp:77] Creating layer relu3
I0415 19:33:01.662864 1958055936 net.cpp:88] Creating Layer relu3
I0415 19:33:01.662868 1958055936 net.cpp:410] relu3 <- scale3
I0415 19:33:01.662873 1958055936 net.cpp:371] relu3 -> scale3 (in-place)
I0415 19:33:01.663158 1958055936 net.cpp:126] Setting up relu3
I0415 19:33:01.663168 1958055936 net.cpp:133] Top shape: 1 64 112 112 (802816)
I0415 19:33:01.663184 1958055936 net.cpp:141] Memory required for data: 97140736
I0415 19:33:01.663188 1958055936 layer_factory.hpp:77] Creating layer pool3
I0415 19:33:01.663193 1958055936 net.cpp:88] Creating Layer pool3
I0415 19:33:01.663197 1958055936 net.cpp:410] pool3 <- scale3
I0415 19:33:01.663202 1958055936 net.cpp:384] pool3 -> pool3
I0415 19:33:01.663208 1958055936 net.cpp:126] Setting up pool3
I0415 19:33:01.663211 1958055936 net.cpp:133] Top shape: 1 64 56 56 (200704)
I0415 19:33:01.663216 1958055936 net.cpp:141] Memory required for data: 97943552
I0415 19:33:01.663219 1958055936 layer_factory.hpp:77] Creating layer conv4
I0415 19:33:01.663228 1958055936 net.cpp:88] Creating Layer conv4
I0415 19:33:01.663230 1958055936 net.cpp:410] conv4 <- pool3
I0415 19:33:01.663234 1958055936 net.cpp:384] conv4 -> conv4
I0415 19:33:01.664613 1958055936 net.cpp:126] Setting up conv4
I0415 19:33:01.664626 1958055936 net.cpp:133] Top shape: 1 128 56 56 (401408)
I0415 19:33:01.664631 1958055936 net.cpp:141] Memory required for data: 99549184
I0415 19:33:01.664638 1958055936 layer_factory.hpp:77] Creating layer bn4
I0415 19:33:01.664643 1958055936 net.cpp:88] Creating Layer bn4
I0415 19:33:01.664646 1958055936 net.cpp:410] bn4 <- conv4
I0415 19:33:01.664651 1958055936 net.cpp:384] bn4 -> bn4
I0415 19:33:01.664669 1958055936 net.cpp:126] Setting up bn4
I0415 19:33:01.664672 1958055936 net.cpp:133] Top shape: 1 128 56 56 (401408)
I0415 19:33:01.664676 1958055936 net.cpp:141] Memory required for data: 101154816
I0415 19:33:01.664681 1958055936 layer_factory.hpp:77] Creating layer scale4
I0415 19:33:01.664707 1958055936 net.cpp:88] Creating Layer scale4
I0415 19:33:01.664711 1958055936 net.cpp:410] scale4 <- bn4
I0415 19:33:01.664716 1958055936 net.cpp:384] scale4 -> scale4
I0415 19:33:01.664723 1958055936 layer_factory.hpp:77] Creating layer scale4
I0415 19:33:01.664752 1958055936 net.cpp:126] Setting up scale4
I0415 19:33:01.664755 1958055936 net.cpp:133] Top shape: 1 128 56 56 (401408)
I0415 19:33:01.664759 1958055936 net.cpp:141] Memory required for data: 102760448
I0415 19:33:01.664764 1958055936 layer_factory.hpp:77] Creating layer relu4
I0415 19:33:01.664769 1958055936 net.cpp:88] Creating Layer relu4
I0415 19:33:01.664772 1958055936 net.cpp:410] relu4 <- scale4
I0415 19:33:01.664786 1958055936 net.cpp:371] relu4 -> scale4 (in-place)
I0415 19:33:01.664937 1958055936 net.cpp:126] Setting up relu4
I0415 19:33:01.664945 1958055936 net.cpp:133] Top shape: 1 128 56 56 (401408)
I0415 19:33:01.664952 1958055936 net.cpp:141] Memory required for data: 104366080
I0415 19:33:01.664955 1958055936 layer_factory.hpp:77] Creating layer pool4
I0415 19:33:01.664960 1958055936 net.cpp:88] Creating Layer pool4
I0415 19:33:01.664964 1958055936 net.cpp:410] pool4 <- scale4
I0415 19:33:01.664968 1958055936 net.cpp:384] pool4 -> pool4
I0415 19:33:01.664976 1958055936 net.cpp:126] Setting up pool4
I0415 19:33:01.664980 1958055936 net.cpp:133] Top shape: 1 128 28 28 (100352)
I0415 19:33:01.664985 1958055936 net.cpp:141] Memory required for data: 104767488
I0415 19:33:01.664988 1958055936 layer_factory.hpp:77] Creating layer conv5
I0415 19:33:01.664995 1958055936 net.cpp:88] Creating Layer conv5
I0415 19:33:01.664999 1958055936 net.cpp:410] conv5 <- pool4
I0415 19:33:01.665004 1958055936 net.cpp:384] conv5 -> conv5
I0415 19:33:01.667851 1958055936 net.cpp:126] Setting up conv5
I0415 19:33:01.667862 1958055936 net.cpp:133] Top shape: 1 256 28 28 (200704)
I0415 19:33:01.667878 1958055936 net.cpp:141] Memory required for data: 105570304
I0415 19:33:01.667883 1958055936 layer_factory.hpp:77] Creating layer bn5
I0415 19:33:01.667889 1958055936 net.cpp:88] Creating Layer bn5
I0415 19:33:01.667893 1958055936 net.cpp:410] bn5 <- conv5
I0415 19:33:01.667907 1958055936 net.cpp:384] bn5 -> bn5
I0415 19:33:01.667917 1958055936 net.cpp:126] Setting up bn5
I0415 19:33:01.667920 1958055936 net.cpp:133] Top shape: 1 256 28 28 (200704)
I0415 19:33:01.667925 1958055936 net.cpp:141] Memory required for data: 106373120
I0415 19:33:01.667930 1958055936 layer_factory.hpp:77] Creating layer scale5
I0415 19:33:01.667934 1958055936 net.cpp:88] Creating Layer scale5
I0415 19:33:01.667938 1958055936 net.cpp:410] scale5 <- bn5
I0415 19:33:01.667943 1958055936 net.cpp:384] scale5 -> scale5
I0415 19:33:01.667959 1958055936 layer_factory.hpp:77] Creating layer scale5
I0415 19:33:01.667969 1958055936 net.cpp:126] Setting up scale5
I0415 19:33:01.667973 1958055936 net.cpp:133] Top shape: 1 256 28 28 (200704)
I0415 19:33:01.667976 1958055936 net.cpp:141] Memory required for data: 107175936
I0415 19:33:01.667981 1958055936 layer_factory.hpp:77] Creating layer relu5
I0415 19:33:01.667985 1958055936 net.cpp:88] Creating Layer relu5
I0415 19:33:01.667999 1958055936 net.cpp:410] relu5 <- scale5
I0415 19:33:01.668002 1958055936 net.cpp:371] relu5 -> scale5 (in-place)
I0415 19:33:01.668153 1958055936 net.cpp:126] Setting up relu5
I0415 19:33:01.668160 1958055936 net.cpp:133] Top shape: 1 256 28 28 (200704)
I0415 19:33:01.668175 1958055936 net.cpp:141] Memory required for data: 107978752
I0415 19:33:01.668179 1958055936 layer_factory.hpp:77] Creating layer pool5
I0415 19:33:01.668184 1958055936 net.cpp:88] Creating Layer pool5
I0415 19:33:01.668187 1958055936 net.cpp:410] pool5 <- scale5
I0415 19:33:01.668192 1958055936 net.cpp:384] pool5 -> pool5
I0415 19:33:01.668198 1958055936 net.cpp:126] Setting up pool5
I0415 19:33:01.668201 1958055936 net.cpp:133] Top shape: 1 256 14 14 (50176)
I0415 19:33:01.668215 1958055936 net.cpp:141] Memory required for data: 108179456
I0415 19:33:01.668218 1958055936 layer_factory.hpp:77] Creating layer conv6
I0415 19:33:01.668242 1958055936 net.cpp:88] Creating Layer conv6
I0415 19:33:01.668246 1958055936 net.cpp:410] conv6 <- pool5
I0415 19:33:01.668259 1958055936 net.cpp:384] conv6 -> conv6
I0415 19:33:01.678371 1958055936 net.cpp:126] Setting up conv6
I0415 19:33:01.678395 1958055936 net.cpp:133] Top shape: 1 512 14 14 (100352)
I0415 19:33:01.678401 1958055936 net.cpp:141] Memory required for data: 108580864
I0415 19:33:01.678407 1958055936 layer_factory.hpp:77] Creating layer bn6
I0415 19:33:01.678416 1958055936 net.cpp:88] Creating Layer bn6
I0415 19:33:01.678421 1958055936 net.cpp:410] bn6 <- conv6
I0415 19:33:01.678426 1958055936 net.cpp:384] bn6 -> bn6
I0415 19:33:01.678447 1958055936 net.cpp:126] Setting up bn6
I0415 19:33:01.678452 1958055936 net.cpp:133] Top shape: 1 512 14 14 (100352)
I0415 19:33:01.678457 1958055936 net.cpp:141] Memory required for data: 108982272
I0415 19:33:01.678464 1958055936 layer_factory.hpp:77] Creating layer scale6
I0415 19:33:01.678470 1958055936 net.cpp:88] Creating Layer scale6
I0415 19:33:01.678473 1958055936 net.cpp:410] scale6 <- bn6
I0415 19:33:01.678488 1958055936 net.cpp:384] scale6 -> scale6
I0415 19:33:01.678498 1958055936 layer_factory.hpp:77] Creating layer scale6
I0415 19:33:01.678509 1958055936 net.cpp:126] Setting up scale6
I0415 19:33:01.678513 1958055936 net.cpp:133] Top shape: 1 512 14 14 (100352)
I0415 19:33:01.678516 1958055936 net.cpp:141] Memory required for data: 109383680
I0415 19:33:01.678521 1958055936 layer_factory.hpp:77] Creating layer relu6
I0415 19:33:01.678526 1958055936 net.cpp:88] Creating Layer relu6
I0415 19:33:01.678529 1958055936 net.cpp:410] relu6 <- scale6
I0415 19:33:01.678544 1958055936 net.cpp:371] relu6 -> scale6 (in-place)
I0415 19:33:01.678782 1958055936 net.cpp:126] Setting up relu6
I0415 19:33:01.678791 1958055936 net.cpp:133] Top shape: 1 512 14 14 (100352)
I0415 19:33:01.678797 1958055936 net.cpp:141] Memory required for data: 109785088
I0415 19:33:01.678800 1958055936 layer_factory.hpp:77] Creating layer pool6
I0415 19:33:01.678807 1958055936 net.cpp:88] Creating Layer pool6
I0415 19:33:01.678809 1958055936 net.cpp:410] pool6 <- scale6
I0415 19:33:01.678814 1958055936 net.cpp:384] pool6 -> pool6
I0415 19:33:01.678822 1958055936 net.cpp:126] Setting up pool6
I0415 19:33:01.678825 1958055936 net.cpp:133] Top shape: 1 512 7 7 (25088)
I0415 19:33:01.678829 1958055936 net.cpp:141] Memory required for data: 109885440
I0415 19:33:01.678833 1958055936 layer_factory.hpp:77] Creating layer conv7
I0415 19:33:01.678839 1958055936 net.cpp:88] Creating Layer conv7
I0415 19:33:01.678843 1958055936 net.cpp:410] conv7 <- pool6
I0415 19:33:01.678848 1958055936 net.cpp:384] conv7 -> conv7
I0415 19:33:01.718405 1958055936 net.cpp:126] Setting up conv7
I0415 19:33:01.718430 1958055936 net.cpp:133] Top shape: 1 1024 7 7 (50176)
I0415 19:33:01.718437 1958055936 net.cpp:141] Memory required for data: 110086144
I0415 19:33:01.718443 1958055936 layer_factory.hpp:77] Creating layer bn7
I0415 19:33:01.718454 1958055936 net.cpp:88] Creating Layer bn7
I0415 19:33:01.718459 1958055936 net.cpp:410] bn7 <- conv7
I0415 19:33:01.718466 1958055936 net.cpp:384] bn7 -> bn7
I0415 19:33:01.718484 1958055936 net.cpp:126] Setting up bn7
I0415 19:33:01.718488 1958055936 net.cpp:133] Top shape: 1 1024 7 7 (50176)
I0415 19:33:01.718492 1958055936 net.cpp:141] Memory required for data: 110286848
I0415 19:33:01.718498 1958055936 layer_factory.hpp:77] Creating layer scale7
I0415 19:33:01.718503 1958055936 net.cpp:88] Creating Layer scale7
I0415 19:33:01.718507 1958055936 net.cpp:410] scale7 <- bn7
I0415 19:33:01.718511 1958055936 net.cpp:384] scale7 -> scale7
I0415 19:33:01.718538 1958055936 layer_factory.hpp:77] Creating layer scale7
I0415 19:33:01.718549 1958055936 net.cpp:126] Setting up scale7
I0415 19:33:01.718552 1958055936 net.cpp:133] Top shape: 1 1024 7 7 (50176)
I0415 19:33:01.718556 1958055936 net.cpp:141] Memory required for data: 110487552
I0415 19:33:01.718560 1958055936 layer_factory.hpp:77] Creating layer relu7
I0415 19:33:01.718575 1958055936 net.cpp:88] Creating Layer relu7
I0415 19:33:01.718578 1958055936 net.cpp:410] relu7 <- scale7
I0415 19:33:01.718582 1958055936 net.cpp:371] relu7 -> scale7 (in-place)
I0415 19:33:01.718709 1958055936 net.cpp:126] Setting up relu7
I0415 19:33:01.718725 1958055936 net.cpp:133] Top shape: 1 1024 7 7 (50176)
I0415 19:33:01.718730 1958055936 net.cpp:141] Memory required for data: 110688256
I0415 19:33:01.718734 1958055936 layer_factory.hpp:77] Creating layer conv8_y
I0415 19:33:01.718750 1958055936 net.cpp:88] Creating Layer conv8_y
I0415 19:33:01.718755 1958055936 net.cpp:410] conv8_y <- scale7
I0415 19:33:01.718760 1958055936 net.cpp:384] conv8_y -> conv8
I0415 19:33:01.745636 1958055936 net.cpp:126] Setting up conv8_y
I0415 19:33:01.745661 1958055936 net.cpp:133] Top shape: 1 256 7 7 (12544)
I0415 19:33:01.745667 1958055936 net.cpp:141] Memory required for data: 110738432
I0415 19:33:01.745673 1958055936 layer_factory.hpp:77] Creating layer bn8
I0415 19:33:01.745682 1958055936 net.cpp:88] Creating Layer bn8
I0415 19:33:01.745687 1958055936 net.cpp:410] bn8 <- conv8
I0415 19:33:01.745692 1958055936 net.cpp:384] bn8 -> bn8
I0415 19:33:01.745709 1958055936 net.cpp:126] Setting up bn8
I0415 19:33:01.745713 1958055936 net.cpp:133] Top shape: 1 256 7 7 (12544)
I0415 19:33:01.745718 1958055936 net.cpp:141] Memory required for data: 110788608
I0415 19:33:01.745723 1958055936 layer_factory.hpp:77] Creating layer scale8
I0415 19:33:01.745729 1958055936 net.cpp:88] Creating Layer scale8
I0415 19:33:01.745733 1958055936 net.cpp:410] scale8 <- bn8
I0415 19:33:01.745738 1958055936 net.cpp:384] scale8 -> scale8
I0415 19:33:01.745760 1958055936 layer_factory.hpp:77] Creating layer scale8
I0415 19:33:01.745770 1958055936 net.cpp:126] Setting up scale8
I0415 19:33:01.745775 1958055936 net.cpp:133] Top shape: 1 256 7 7 (12544)
I0415 19:33:01.745779 1958055936 net.cpp:141] Memory required for data: 110838784
I0415 19:33:01.745784 1958055936 layer_factory.hpp:77] Creating layer relu8
I0415 19:33:01.745789 1958055936 net.cpp:88] Creating Layer relu8
I0415 19:33:01.745791 1958055936 net.cpp:410] relu8 <- scale8
I0415 19:33:01.745800 1958055936 net.cpp:371] relu8 -> scale8 (in-place)
I0415 19:33:01.747014 1958055936 net.cpp:126] Setting up relu8
I0415 19:33:01.747023 1958055936 net.cpp:133] Top shape: 1 256 7 7 (12544)
I0415 19:33:01.747027 1958055936 net.cpp:141] Memory required for data: 110888960
I0415 19:33:01.747031 1958055936 layer_factory.hpp:77] Creating layer fc9
I0415 19:33:01.747045 1958055936 net.cpp:88] Creating Layer fc9
I0415 19:33:01.747048 1958055936 net.cpp:410] fc9 <- scale8
I0415 19:33:01.747063 1958055936 net.cpp:384] fc9 -> result
I0415 19:33:01.995153 1958055936 net.cpp:126] Setting up fc9
I0415 19:33:01.995194 1958055936 net.cpp:133] Top shape: 1 1470 (1470)
I0415 19:33:01.995201 1958055936 net.cpp:141] Memory required for data: 110894840
I0415 19:33:01.995210 1958055936 net.cpp:204] fc9 does not need backward computation.
I0415 19:33:01.995215 1958055936 net.cpp:204] relu8 does not need backward computation.
I0415 19:33:01.995219 1958055936 net.cpp:204] scale8 does not need backward computation.
I0415 19:33:01.995224 1958055936 net.cpp:204] bn8 does not need backward computation.
I0415 19:33:01.995229 1958055936 net.cpp:204] conv8_y does not need backward computation.
I0415 19:33:01.995234 1958055936 net.cpp:204] relu7 does not need backward computation.
I0415 19:33:01.995237 1958055936 net.cpp:204] scale7 does not need backward computation.
I0415 19:33:01.995241 1958055936 net.cpp:204] bn7 does not need backward computation.
I0415 19:33:01.995245 1958055936 net.cpp:204] conv7 does not need backward computation.
I0415 19:33:01.995249 1958055936 net.cpp:204] pool6 does not need backward computation.
I0415 19:33:01.995254 1958055936 net.cpp:204] relu6 does not need backward computation.
I0415 19:33:01.995256 1958055936 net.cpp:204] scale6 does not need backward computation.
I0415 19:33:01.995260 1958055936 net.cpp:204] bn6 does not need backward computation.
I0415 19:33:01.995263 1958055936 net.cpp:204] conv6 does not need backward computation.
I0415 19:33:01.995267 1958055936 net.cpp:204] pool5 does not need backward computation.
I0415 19:33:01.995271 1958055936 net.cpp:204] relu5 does not need backward computation.
I0415 19:33:01.995275 1958055936 net.cpp:204] scale5 does not need backward computation.
I0415 19:33:01.995280 1958055936 net.cpp:204] bn5 does not need backward computation.
I0415 19:33:01.995282 1958055936 net.cpp:204] conv5 does not need backward computation.
I0415 19:33:01.995286 1958055936 net.cpp:204] pool4 does not need backward computation.
I0415 19:33:01.995290 1958055936 net.cpp:204] relu4 does not need backward computation.
I0415 19:33:01.995295 1958055936 net.cpp:204] scale4 does not need backward computation.
I0415 19:33:01.995297 1958055936 net.cpp:204] bn4 does not need backward computation.
I0415 19:33:01.995301 1958055936 net.cpp:204] conv4 does not need backward computation.
I0415 19:33:01.995306 1958055936 net.cpp:204] pool3 does not need backward computation.
I0415 19:33:01.995309 1958055936 net.cpp:204] relu3 does not need backward computation.
I0415 19:33:01.995313 1958055936 net.cpp:204] scale3 does not need backward computation.
I0415 19:33:01.995316 1958055936 net.cpp:204] bn3 does not need backward computation.
I0415 19:33:01.995321 1958055936 net.cpp:204] conv3 does not need backward computation.
I0415 19:33:01.995324 1958055936 net.cpp:204] pool2 does not need backward computation.
I0415 19:33:01.995327 1958055936 net.cpp:204] relu2 does not need backward computation.
I0415 19:33:01.995332 1958055936 net.cpp:204] scale2 does not need backward computation.
I0415 19:33:01.995335 1958055936 net.cpp:204] bn2 does not need backward computation.
I0415 19:33:01.995338 1958055936 net.cpp:204] conv2 does not need backward computation.
I0415 19:33:01.995342 1958055936 net.cpp:204] pool1 does not need backward computation.
I0415 19:33:01.995347 1958055936 net.cpp:204] relu1 does not need backward computation.
I0415 19:33:01.995349 1958055936 net.cpp:204] scale1 does not need backward computation.
I0415 19:33:01.995353 1958055936 net.cpp:204] bn1 does not need backward computation.
I0415 19:33:01.995357 1958055936 net.cpp:204] conv1 does not need backward computation.
I0415 19:33:01.995362 1958055936 net.cpp:204] input does not need backward computation.
I0415 19:33:01.995364 1958055936 net.cpp:246] This network produces output result
I0415 19:33:01.995378 1958055936 net.cpp:259] Network initialization done.
False
(16175385,)
conv1(conv)
bn1(batchnorm)
scale1(scale)
conv2(conv)
bn2(batchnorm)
scale2(scale)
conv3(conv)
bn3(batchnorm)
scale3(scale)
conv4(conv)
bn4(batchnorm)
scale4(scale)
conv5(conv)
bn5(batchnorm)
scale5(scale)
conv6(conv)
bn6(batchnorm)
scale6(scale)
conv7(conv)
bn7(batchnorm)
scale7(scale)
conv8_y(conv)
bn8(batchnorm)
scale8(scale)
fc9(fc)
Traceback (most recent call last):
File "create_yolo_caffemodel.py", line 113, in
main(sys.argv[1:])
File "create_yolo_caffemodel.py", line 92, in main
net.params[pr][0].data[...] = np.reshape(netWeights[count:count+weightSize], dims)
File "/usr/local/lib/python2.7/site-packages/numpy/core/fromnumeric.py", line 232, in reshape
return _wrapfunc(a, 'reshape', newshape, order=order)
File "/usr/local/lib/python2.7/site-packages/numpy/core/fromnumeric.py", line 57, in _wrapfunc
return getattr(obj, method)(*args, **kwds)
ValueError: cannot reshape array of size 7515115 into shape (1470,12544)

@xiaoyuch24
Copy link

xiaoyuch24 commented Apr 16, 2017

@victorv @enderhsu I got same problem with victorv. I already downloaded "tiny.cfg", "tiny.weights", "yolo.weights" and "yolov1.weights". For each weights file, I used this command

python create_yolo_caffemodel.py -m "prototxt_file" -w "weights_file" -o tiny-yolo.caffemodel

to try all the prototxt files in the prototxt folder. But, none of them is working.

@enderhsu could you please tell us which specific prototxt file in the prototxt folder you used with tiny.weights file?

I also tried "python create_yolo_prototxt.py tiny.cfg yolo_tiny.prototxt" to build a new prototxt file. And then, I used the new yolo_tiny.prototxt file to run

"python create_yolo_caffemodel.py -m yolo_tiny.prototxt -w tiny.weights -o yolo.caffemodel"

I got the error:

[('-m', 'yolo_tiny.prototxt'), ('-w', 'tiny.weights'), ('-o', 'yolo.caffemodel')]
model file is yolo_tiny.prototxt
weight file is tiny.weights
output caffemodel file is yolo.caffemodel
[libprotobuf ERROR google/protobuf/text_format.cc:245] Error parsing text-format caffe.NetParameter: 629:3: Invalid value for boolean field "global_pooling". Value: "True".
WARNING: Logging before InitGoogleLogging() is written to STDERR
F0415 22:59:29.137689 12044 upgrade_proto.cpp:88] Check failed: ReadProtoFromTextFile(param_file, param) Failed to parse NetParameter file: yolo_tiny.prototxt
*** Check failure stack trace: ***
Aborted (core dumped)

@zhan-xu
Copy link

zhan-xu commented Apr 16, 2017

@xiaoyuchhusky I met this error too. I manually change the value "True" to "true" for global_pooling in the generated prototxt. Besides, you probably also need to change "Relu" to "ReLU" in the same prototxt.

@xiaoyuch24
Copy link

xiaoyuch24 commented Apr 16, 2017

@enderhsu Thank you so much for your quick reply. Everything is working well right now. Did you try to input a video file to do the object detection?

@victorv
Copy link
Author

victorv commented Apr 16, 2017

@enderhsu @xiaoyuchhusky confirmed that it works with the generated prototxt only.

@zhan-xu
Copy link

zhan-xu commented Apr 17, 2017

@xiaoyuchhusky Not yet. Will do in a few days.

@zhan-xu
Copy link

zhan-xu commented Apr 17, 2017

@xiaoyuchhusky it seems not correct. For some 1*1 conv layer, the generated prototxt adds 1 pixel padding, which increases the size of feature maps. The overall architecture is not consistent with original dark net.

@yyytq
Copy link

yyytq commented May 4, 2017

@xiaoyuchhusky @enderhsu I use the .weight and .cfg you haved mentioned, but still get the error:

Traceback (most recent call last):
File "create_yolo_caffemodel.py", line 113, in
main(sys.argv[1:])
File "create_yolo_caffemodel.py", line 78, in main
net.params[pr][0].data[...] = np.reshape(netWeights[count:count+weightSize], dims)
File "/usr/local/lib/python2.7/dist-packages/numpy/core/fromnumeric.py", line 232, in reshape
return _wrapfunc(a, 'reshape', newshape, order=order)
File "/usr/local/lib/python2.7/dist-packages/numpy/core/fromnumeric.py", line 57, in _wrapfunc
return getattr(obj, method)(*args, **kwds)
ValueError: cannot reshape array of size 158400 into shape (512,64,3,3)

do you have any suggestions about this?

@deepdad
Copy link

deepdad commented May 27, 2017

python D:\caffe-yolo\yolo_main.py -m D:\caffe-yolo\created_yolo.caffemodel -w D:\caffe-yolo\tiny-yolo.weights -i C:\4.jpg
[('-m', 'D:\caffe-yolo\created_yolo.caffemodel'), ('-w', 'D:\caffe-yolo\tiny-yolo.weights'), ('-i', 'C:\4.jpg')]
model file is " D:\caffe-yolo\created_yolo.caffemodel
weight file is " D:\caffe-yolo\tiny-yolo.weights
image file is " C:\4.jpg
WARNING: Logging before InitGoogleLogging() is written to STDERR
W0527 08:16:09.356567 5128 _caffe.cpp:175] DEPRECATION WARNING - deprecated use of Python interface
W0527 08:16:09.356567 5128 _caffe.cpp:176] Use this instead (with the named "weights" parameter):
W0527 08:16:09.356567 5128 _caffe.cpp:178] Net('D:\caffe-yolo\created_yolo.caffemodel', 1, weights='D:\caffe-yolo\tiny-yolo.weights')
[libprotobuf ERROR C:\Users\guillaume\work\caffe-builder\build_v140_x64\packages\protobuf\protobuf_download-prefix\src\protobuf_download\src\google\protobuf\text_format.cc:298] Error parsing text-format caffe.NetParameter: 2:1: Invalid control characters encountered in text.
[libprotobuf ERROR C:\Users\guillaume\work\caffe-builder\build_v140_x64\packages\protobuf\protobuf_download-prefix\src\protobuf_download\src\google\protobuf\text_format.cc:298] Error parsing text-format caffe.NetParameter: 2:6: Interpreting non ascii codepoint 162.
[libprotobuf ERROR C:\Users\guillaume\work\caffe-builder\build_v140_x64\packages\protobuf\protobuf_download-prefix\src\protobuf_download\src\google\protobuf\text_format.cc:298] Error parsing text-format caffe.NetParameter: 2:6: Message type "caffe.NetParameter" has no field named "tiny".
F0527 08:16:09.356567 5128 upgrade_proto.cpp:88] Check failed: ReadProtoFromTextFile(param_file, param) Failed to parse NetParameter file: D:\caffe-yolo\created_yolo.caffemodel
*** Check failure stack trace: ***

Putting
net = caffe.Net(model_filename, caffe.TEST, weights=weight_filename)
on line 137 of yolo_main.py results in a different error

@ashwinnair14
Copy link

Hello,

Did any one solve this issue?
I am not able to run tiny yolo.
And converting them I get similar errors as stated above.

@TapSumBong
Copy link

TapSumBong commented Apr 9, 2018

@enderhsu Hi. I was able to convert to prototxt using tiny.cfg. I would like to train my own model, how to I configure the number of classes I'm going to train on tiny.cfg?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

8 participants