-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_aug4ind.py
348 lines (288 loc) · 14.5 KB
/
main_aug4ind.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import argparse
import os
import time
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import models
import random
from lib.LinearAverage import LinearAverage
from lib.BatchAverage import BatchCriterion
from lib.BatchAverageRot import BatchCriterionRot
from lib.BatchAverageFour import BatchCriterionFour
from lib.utils import AverageMeter
from test import kNN
import numpy as np
from lib.utils import save_checkpoint, adjust_learning_rate
from tensorboardX import SummaryWriter
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet18)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=3201, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.03, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--test-only', action='store_true', help='test only')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--low-dim', default=128, type=int,
metavar='D', help='feature dimension')
parser.add_argument('--nce-k', default=4096, type=int,
metavar='K', help='number of negative samples for NCE')
parser.add_argument('--nce-t', default=0.07, type=float,
metavar='T', help='temperature parameter for softmax')
parser.add_argument('--nce-m', default=0.5, type=float,
help='momentum for non-parametric updates')
parser.add_argument('--iter_size', default=1, type=int,
help='caffe style iter size')
parser.add_argument('--result', default="", type=str)
parser.add_argument('--seedstart', default=0, type=int)
parser.add_argument('--seed', default=0, type=int)
parser.add_argument("--domain", action="store_true")
parser.add_argument("--synthesis", action="store_true")
parser.add_argument('--showfeature', action="store_true")
parser.add_argument('--multiaug', action="store_true")
parser.add_argument('--multitask', action="store_true")
parser.add_argument("--multitaskposrot", action="store_true")
best_prec1 = 0
parser.add_argument("--saveembed", type=str, default="")
def get_learnable_para(model):
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
return sum([np.prod(p.size()) for p in model_parameters])
def main():
global args, best_prec1
args = parser.parse_args()
# init seed
my_whole_seed = 222
random.seed(my_whole_seed)
np.random.seed(my_whole_seed)
torch.manual_seed(my_whole_seed)
torch.cuda.manual_seed_all(my_whole_seed)
torch.cuda.manual_seed(my_whole_seed)
np.random.seed(my_whole_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ['PYTHONHASHSEED'] = str(my_whole_seed)
for kk_time in range(args.seedstart, args.seedstart+1):
args.seed = kk_time
args.result = args.result + str(args.seed)
# create model
model = models.__dict__[args.arch](low_dim=args.low_dim, multitask=args.multitask , showfeature=args.showfeature, domain=args.domain,args=args)
model = torch.nn.DataParallel(model).cuda()
print ('Number of learnable params', get_learnable_para(model)/1000000., " M")
# Data loading code
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
aug = transforms.Compose([transforms.RandomResizedCrop(224, scale=(0.2, 1.)),
transforms.RandomGrayscale(p=0.2),
transforms.ColorJitter(0.4, 0.4, 0.4, 0.4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize])
# aug = transforms.Compose([transforms.RandomResizedCrop(224, scale=(0.08, 1.), ratio=(3 / 4, 4 / 3)),
# transforms.RandomHorizontalFlip(p=0.5),
# get_color_distortion(s=1),
# transforms.Lambda(lambda x: gaussian_blur(x)),
# transforms.ToTensor(),
# normalize])
aug_test = transforms.Compose([
transforms.Resize((224,224)),
transforms.ToTensor(),
normalize])
# load dataset
# import datasets.fundus_amd_syn_crossvalidation as medicaldata
import datasets.fundus_amd_syn_crossvalidation_ind as medicaldata
train_dataset = medicaldata.traindataset(root=args.data, transform=aug, train=True, args=args)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=4, drop_last=True if args.multiaug else False, worker_init_fn=random.seed(my_whole_seed))
valid_dataset = medicaldata.traindataset(root=args.data, transform=aug_test, train=False, args=args)
val_loader = torch.utils.data.DataLoader(
valid_dataset, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=4,
worker_init_fn=random.seed(my_whole_seed))
# define lemniscate and loss function (criterion)
ndata = train_dataset.__len__()
lemniscate = LinearAverage(args.low_dim, ndata, args.nce_t, args.nce_m).cuda()
if args.multitaskposrot:
cls_criterion = nn.CrossEntropyLoss().cuda()
else:
cls_criterion = None
if args.multitaskposrot:
print ("running multi task with miccai")
criterion = BatchCriterion(1, 0.1, args.batch_size, args).cuda()
elif args.synthesis:
print ("running synthesis")
criterion = BatchCriterionFour(1, 0.1, args.batch_size, args).cuda()
elif args.multiaug:
print ("running cvpr")
criterion = BatchCriterion(1, 0.1, args.batch_size, args).cuda()
else:
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.Adam(model.parameters(), args.lr,
weight_decay=args.weight_decay)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
lemniscate = checkpoint['lemniscate']
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
if args.evaluate:
knn_num = 100
auc, acc, precision, recall, f1score = kNN(args, model, lemniscate, train_loader, val_loader, knn_num, args.nce_t, 2)
f = open("savemodels/result.txt", "a+")
f.write("auc: %.4f\n" % (auc))
f.write("acc: %.4f\n" % (acc))
f.write("pre: %.4f\n" % (precision))
f.write("recall: %.4f\n" % (recall))
f.write("f1score: %.4f\n" % (f1score))
f.close()
return
# mkdir result folder and tensorboard
os.makedirs(args.result, exist_ok=True)
writer = SummaryWriter("runs/" + str(args.result.split("/")[-1]))
writer.add_text('Text', str(args))
# copy code
import shutil, glob
source = glob.glob("*.py")
source += glob.glob("*/*.py")
os.makedirs(args.result + "/code_file", exist_ok=True)
for file in source:
name = file.split("/")[0]
if name == file:
shutil.copy(file, args.result + "/code_file/")
else:
os.makedirs(args.result + "/code_file/" + name, exist_ok=True)
shutil.copy(file, args.result + "/code_file/" + name)
for epoch in range(args.start_epoch, args.epochs):
lr = adjust_learning_rate(optimizer, epoch, args, [1000, 2000])
writer.add_scalar("lr", lr, epoch)
# # train for one epoch
loss = train(train_loader, model, lemniscate, criterion, cls_criterion, optimizer, epoch, writer)
writer.add_scalar("train_loss", loss, epoch)
# save checkpoint
if epoch % 200 == 0 or (epoch in [1600, 1800, 2000]):
auc, acc, precision, recall, f1score = kNN(args, model, lemniscate, train_loader, val_loader, 100,
args.nce_t, 2)
# save to txt
writer.add_scalar("test_auc", auc, epoch)
writer.add_scalar("test_acc", acc, epoch)
writer.add_scalar("test_precision", precision, epoch)
writer.add_scalar("test_recall", recall, epoch)
writer.add_scalar("test_f1score", f1score, epoch)
f = open(args.result+"/result.txt","a+")
f.write("epoch " + str(epoch) + "\n")
f.write("auc: %.4f\n" % (auc))
f.write("acc: %.4f\n" % (acc))
f.write("pre: %.4f\n" % (precision))
f.write("recall: %.4f\n" % (recall))
f.write("f1score: %.4f\n" % (f1score))
f.close()
save_checkpoint({
'epoch': epoch,
'arch': args.arch,
'state_dict': model.state_dict(),
'lemniscate': lemniscate,
'optimizer' : optimizer.state_dict(),
}, filename = args.result + "/fold" +str(args.seedstart)+"-epoch-" +str(epoch) + ".pth.tar")
def train(train_loader, model, lemniscate, criterion, cls_criterion, optimizer, epoch, writer):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
losses_ins = AverageMeter()
losses_rot = AverageMeter()
# switch to train mode
model.train()
end = time.time()
optimizer.zero_grad()
for i, (input, target, index, name) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
# compute output
if args.multitaskposrot:
# instance discrimination and rotation prediction
input = torch.cat(input, 0).cuda()
index = torch.cat([index, index], 0).cuda()
rotation_label = torch.cat(target, 0).cuda()
feature, pred_rot, feture_whole = model(input)
loss_instance = criterion(feature, index) / args.iter_size
loss_cls = cls_criterion(pred_rot, rotation_label)
loss = loss_instance + 1.0 * loss_cls
losses_ins.update(loss_instance.item() * args.iter_size, input.size(0))
losses_rot.update(loss_cls.item() * args.iter_size, input.size(0))
elif args.synthesis:
dataX = torch.cat(input,0).cuda()
ori_data = dataX[:int(dataX.shape[0]/2)]
syn_data = dataX[int(dataX.shape[0]/2):]
data = [ori_data, syn_data]
dataX = torch.stack(data, dim=1).cuda()
batch_size, types, channels, height, width = dataX.size()
input = dataX.view([batch_size * types, channels, height, width])
# instance discrimination
# input = torch.cat(input, 0).cuda()
feature = model(input)
loss = criterion(feature, index) / args.iter_size
elif args.multiaug:
input = torch.cat(input, 0).cuda()
feature = model(input)
loss = criterion(feature, index) / args.iter_size
else:
# instance discrimination memory bank
input = input.cuda()
index = index.cuda()
feature = model(input)
output = lemniscate(feature, index)
loss = criterion(output, index) / args.iter_size
loss.backward()
# measure accuracy and record loss
losses.update(loss.item() * args.iter_size, input.size(0))
if (i+1) % args.iter_size == 0:
# compute gradient and do SGD step
optimizer.step()
optimizer.zero_grad()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses))
writer.add_scalar("losses_ins", losses_ins.avg, epoch)
writer.add_scalar("losses_rot", losses_rot.avg, epoch)
return losses.avg
if __name__ == '__main__':
main()