-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.m
64 lines (54 loc) · 1.83 KB
/
test.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
%predict salient object saliency maps.
clear,clc
%caffe.reset_all();
addpath('/caffe_path/matlab');
%if you don't have a CUDA enabled GPU for acceleration, change
%it to 0, then the code will run slowly.
use_gpu=1;
gpu_id=0;
if use_gpu
caffe.set_mode_gpu();
caffe.set_device(gpu_id);
else
caffe.set_mode_cpu();
end
modelname='CCRF_iter_4500.caffemodel';
protoname='deploy.prototxt';
net = caffe.Net(protoname, modelname, 'test');
mean_pix = [104.008, 116.669, 122.675];
alpha = 0.2 %for binarizing
imgRoot='./Img';
resRoot='./Result';
mkdir(resRoot);
modelfile = dir(imgRoot);
isfold = [modelfile(:).isdir];
modelname = {modelfile(isfold).name}';
modelname(ismember(modelname,{'.','..'})) = [];
for imodel = 1:length(modelname)
imgFiles=dir([imgRoot '/' modelname{imodel} '/' '*' 'g']);
imgNum=length(imgFiles);
imgPath = [imgRoot '/' modelname{imodel}];
resPath = [resRoot '/' modelname{imodel}];
mkdir(resPath);
for i=1:imgNum
disp(['Processing the ' num2str(i) 'st image out of ' num2str(imgNum)]);
im=imread([imgPath '/' imgFiles(i).name]);
if size(im,3)==1
im = cat(3, im, im, im);
end
im = single(im);
img = imresize(im, [240, 320]);
img = img(:, :, [3 2 1]);
img = permute(img, [2 1 3]);
for c = 1:3
img(:, :, c) = img(:, :, c) - mean_pix(c);
end
net.blobs('data').set_data(img);
net.forward_prefilled();
%sm=imresize((net.blobs('predicted-map4-sig').get_data())',[size(im,1),size(im,2)]);
sm=imresize((net.blobs('predicted-map4').get_data())',[size(im,1),size(im,2)]);
sm = 1./(exp(-(1+alpha)*sm)+1);
sm= (sm-min(sm(:)))./(max(sm(:))-min(sm(:)));
imwrite(sm,[resPath '/' imgFiles(i).name]);
end
end