forked from Oreobird/Face-Anti-Spoofing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
142 lines (109 loc) · 6.32 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import tensorflow as tf
import os
import numpy as np
import cv2
import scipy.io as sio
import heapq
# import tensorflow.contrib.eager as tfe
# tfe.enable_eager_execution()
np.set_printoptions(threshold=np.nan)
EPOCHS = 25
class FasNet:
def __init__(self, dataset, class_num, batch_size, input_size, fine_tune_model_file='imagenet'):
self.class_num = class_num
self.batch_size = batch_size
self.input_size = input_size
self.dataset = dataset
self.fine_tune_model_file = fine_tune_model_file
self.model = self.__create_model()
def __dense(self, feature):
feature = tf.keras.layers.Flatten()(feature)
feature = tf.keras.layers.Dense(units=128)(feature)
feature = tf.keras.layers.BatchNormalization()(feature)
feature = tf.keras.layers.Activation(activation=tf.nn.leaky_relu)(feature)
feature = tf.keras.layers.Dropout(0.5)(feature)
feature = tf.keras.layers.Dense(units=128)(feature)
feature = tf.keras.layers.BatchNormalization()(feature)
feature = tf.keras.layers.Activation(activation=tf.nn.leaky_relu)(feature)
feature = tf.keras.layers.Dropout(0.5)(feature)
return feature
def __extract_feature(self, model, name, input):
model._name = name
for layer in model.layers:
layer.trainable = False
return model(input)
def __create_model(self):
input_hsv = tf.keras.layers.Input(name='hsv_input', shape=(self.input_size, self.input_size, 3))
input_yuv = tf.keras.layers.Input(name='yuv_input', shape=(self.input_size, self.input_size, 3))
vgg_hsv = tf.keras.applications.VGG16(weights=self.fine_tune_model_file, include_top=False)
vgg_yuv = tf.keras.applications.VGG16(weights=self.fine_tune_model_file, include_top=False)
feature_hsv = self.__extract_feature(vgg_hsv, 'vgg_hsv', input_hsv)
feature_yuv = self.__extract_feature(vgg_yuv, 'vgg_yuv', input_yuv)
feature = tf.keras.layers.concatenate([feature_hsv, feature_yuv])
feature = self.__dense(feature)
output = tf.keras.layers.Dense(name='output', units=self.class_num, activation=tf.nn.softmax)(feature)
model = tf.keras.Model(inputs=[input_hsv, input_yuv], outputs=output)
model.compile(optimizer=tf.train.AdamOptimizer(),
loss='categorical_crossentropy')
return model
def train(self, model_file, checkpoint_dir, log_dir, max_epoches=EPOCHS, load_weight=True):
self.model.summary()
# tf.keras.utils.plot_model(self.model, to_file='model.png')
if load_weight:
self.model.load_weights(model_file)
else:
cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_dir,
save_weights_only=True,
save_best_only=True,
period=2,
verbose=1)
earlystop_cb = tf.keras.callbacks.EarlyStopping(monitor='val_loss',
mode='min',
min_delta=0.001,
patience=3,
verbose=1)
tb_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir)
input_name_list = ['hsv_input', 'yuv_input']
output_name_list = ['output']
self.model.fit_generator(generator=self.dataset.train_data_generator(input_name_list, output_name_list, 'train.txt'),
epochs=max_epoches,
steps_per_epoch=self.dataset.train_num() // self.batch_size,
validation_data=self.dataset.train_data_generator(input_name_list, output_name_list, 'val.txt'),
validation_steps=self.dataset.val_num() // self.batch_size,
callbacks=[cp_callback, earlystop_cb, tb_callback],
max_queue_size=10,
workers=1,
verbose=1)
self.model.save(model_file)
def predict(self):
input_name_list = ['hsv_input', 'yuv_input']
output_name_list = ['output']
predictions = self.model.predict_generator(generator=self.dataset.test_data_generator(input_name_list, output_name_list, 'test.txt', shuffle=False),
steps=self.dataset.test_num() // self.batch_size,
verbose=1)
preds = predictions
print(preds)
test_data = self.dataset.test_data_generator(input_name_list, output_name_list, 'test.txt', shuffle=False)
correct = 0
steps = self.dataset.test_num() // self.batch_size
total = steps * self.batch_size
for step in range(steps):
_, test_batch_y = next(test_data)
# print(test_batch_y)
real_batch = test_batch_y['output']
# print(real_batch)
for i, real in enumerate(real_batch):
pred_idx = np.argmax(preds[step * self.batch_size + i])
# print(pred_idx)
if real[pred_idx]:
correct += 1
print("fas==> correct:{}, total:{}, correct_rate:{}".format(correct, total, 1.0 * correct / total))
return predictions
def test_online(self, face_imgs):
batch_x_hsv = np.array(face_imgs[0]['hsv'], dtype=np.float32)
batch_x_ycrcb = np.array(face_imgs[0]['yuv'], dtype=np.float32)
batch_x_hsv = np.expand_dims(batch_x_hsv, 0)
batch_x_ycrcb = np.expand_dims(batch_x_ycrcb, 0)
predictions = self.model.predict({'hsv_input': batch_x_hsv, 'yuv_input': batch_x_ycrcb}, batch_size=1)
predictions = np.asarray(predictions)
return predictions