forked from GeoRos/UAS-Vision-2016-TargetDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathminFuncSGD.m
97 lines (80 loc) · 2.85 KB
/
minFuncSGD.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
function [opttheta] = minFuncSGD(funObj,theta,data,labels,options)
% Runs stochastic gradient descent with momentum to optimize the
% parameters for the given objective.
%
% Parameters:
% funObj - function handle which accepts as input theta,
% data, labels and returns cost and gradient w.r.t
% to theta.
% theta - unrolled parameter vector
% data - stores data in m x n x numExamples tensor
% labels - corresponding labels in numExamples x 1 vector
% options - struct to store specific options for optimization
%
% Returns:
% opttheta - optimized parameter vector
%
% Options (* required)
% epochs* - number of epochs through data
% alpha* - initial learning rate
% minibatch* - size of minibatch
% momentum - momentum constant, default to 0.9
%%======================================================================
%% Setup
assert(all(isfield(options,{'epochs','alpha','minibatch'})),...
'Some options not defined');
if ~isfield(options,'momentum')
options.momentum = 0.9;
end
epochs = options.epochs;
alpha = options.alpha;
minibatch = options.minibatch;
m = length(labels); % training set size
% Setup for momentum
mom = 0.2;
momIncrease = 20;
optCost = 100;
velocity = zeros(size(theta));
%%======================================================================
%% SGD loop
it = 0;
prevCost = 0;
totalTime = 0;
disp(m-minibatch+1)
for e = 1:epochs
for repeats = 1:10
% randomly permute indices of data for quick minibatch sampling
rp = randperm(m);
for s=1:minibatch:(m-minibatch+1)
tic;
it = it + 1;
% increase momentum after momIncrease iterations
if it == 20
mom = options.momentum;
end;
% get next randomly selected minibatch
mb_data = data(:,:,rp(s:s+minibatch-1));
mb_labels = labels(rp(s:s+minibatch-1));
% evaluate the objective function on the next minibatch
[cost,grad, preds] = funObj(theta,mb_data,mb_labels);
plotResultBars(preds, mb_labels, minibatch, cost);
velocity=mom*velocity+alpha*grad;
theta=theta-velocity;
fprintf('\nEpoch %d: Cost on iteration %d is %f\n',e,it,cost);
disp(['Iteration time: ', num2str(toc), 'sec'])
totalTime = totalTime + toc;
disp(['Total time: ', num2str(totalTime), 'sec, ',...
num2str(totalTime/60), 'min, ', num2str(totalTime/3600), 'h'])
estimatedTime = totalTime/it*(m-minibatch+1)/minibatch*10*epochs/3600;
disp(['Estimated Time for optimization: ', num2str(estimatedTime), ' hours'])
if cost<optCost
optCost = cost;
bestCostTheta = theta;
end
end;
end
% aneal learning rate by factor of two after each epoch
alpha = alpha/2.0;
end
opttheta = bestCostTheta;
end