Skip to content

yanghongji2007/SAIG

Repository files navigation

SAIG

Prepare

cd ./pytorch-image-models
pip install -e .

Please download CVUSA, CVACT, VIGOR. Please download the pre-trained model

Dataset Model top-1 weight log
ImageNet-1k SAIG-S 77.2% weight log
ImageNet-1k SAIG-D 80.3% weight log

Train

CVUSA & CVACT

bash train.sh
bash train_sam.sh

or directly run python train.py or python train_sam.py by giving other args

VIGOR

bash train_vigor.sh
bash train_vigor_sam.sh

Test

CVUSA & CVACT

bash test.sh

VIGOR

bash test_vigor.sh

Trained model

CVUSA

Method Pool Loss ASAM R@1 Weight
SAIG-S GAP Triplet No 88.82 Google_Drive
SAIG-S GAP Triplet Yes 92.69 Google_Drive
SAIG-S SMD Triplet No 91.77 Google_Drive
SAIG-S SMD Triplet Yes 95.37 Google_Drive
SAIG-D GAP Triplet No 90.29 Google_Drive
SAIG-D GAP Triplet Yes 93.97 Google_Drive
SAIG-D SMD Triplet No 92.71 Google_Drive
SAIG-D SMD Triplet Yes 96.08 Google_Drive

CVACT

Method Pool Loss ASAM R@1 Weight
SAIG-S GAP Triplet No 81.39 Google_Drive
SAIG-S GAP Triplet Yes 85.39 Google_Drive
SAIG-S SMD Triplet No 83.54 Google_Drive
SAIG-S SMD Triplet Yes 88.44 Google_Drive
SAIG-D GAP Triplet No 82.40 Google_Drive
SAIG-D GAP Triplet Yes 86.65 Google_Drive
SAIG-D SMD Triplet No 84.42 Google_Drive
SAIG-D SMD Triplet Yes 89.21 Google_Drive

VIGOR

Method Pool Loss ASAM Same Area R@1 Cross Area R@1
SAIG-S GAP Triplet No 40.38 10.22
SAIG-S GAP Triplet Yes 46.21 15.33
SAIG-D GAP Triplet No 42.15 11.88
SAIG-S SMD Triplet No 45.92 14.50
SAIG-D SMD Triplet No 51.50 17.58
SAIG-D SMD InfoNCE No 55.37 23.47
SAIG-D SMD Semi-Triplet No 55.60 22.35
SAIG-S SMD Triplet Yes 57.57 25.44
SAIG-S SMD Semi-Triplet Yes 62.28 30.14
SAIG-D SMD Triplet Yes 61.27 27.61
SAIG-D SMD InfoNCE Yes 62.92 32.77
SAIG-D SMD Semi-Triplet Yes 65.23 33.05

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published