-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathgenerate.py
42 lines (36 loc) · 1.45 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from component.ofa.modeling_ofa import OFAModel
from torchvision import transforms
from PIL import Image
from glob import glob
from transformers import BertTokenizerFast
def main():
model_name_or_path = 'YeungNLP/ofa-cn-base-muge-v2'
image_path = './images/test/*'
# 初始化model和tokenizer
model = OFAModel.from_pretrained(model_name_or_path)
tokenizer = BertTokenizerFast.from_pretrained(model_name_or_path)
# 初始化图片预处理器
mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5]
resolution = 256
patch_resize_transform = transforms.Compose([
lambda image: image.convert("RGB"),
transforms.Resize((resolution, resolution), interpolation=Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std)
])
# 对prompt进行预处理
prompt = '图片描述了什么?'
input_ids = tokenizer([prompt], return_tensors="pt").input_ids
# 扫描目录下的所有图片
for file in glob(image_path):
# 加载图片并且进行预处理
img = Image.open(file)
patch_images = patch_resize_transform(img).unsqueeze(0)
# 生成caption
gen = model.generate(input_ids, patch_images=patch_images, num_beams=5, no_repeat_ngram_size=3)
text = tokenizer.batch_decode(gen, skip_special_tokens=True)[0].replace(' ', '')
print(file)
print(text)
print()
if __name__ == '__main__':
main()