-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsim_one_object_all_grasps.py
350 lines (286 loc) · 13.1 KB
/
sim_one_object_all_grasps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import sys, os, time, math, pickle
import numpy as np
from isaacgym import gymapi
from isaacgym import gymutil
from isaacgym import gymtorch
from isaacgym.torch_utils import quat_mul, tf_combine
import torch
sys.path.append('./')
from tools.utils import get_RT_from_grasp_params, get_width_from_grasp_params, R2q
# parse arguments
args = gymutil.parse_arguments(
description="Test multiple grasps for one object",
custom_parameters=[
{"name": "--category", "type": str, "default": ''},
{"name": "--force", "type": float, "default": -0.98},
{"name": "--asset_root", "type": str, "default": "./isaac_sim/assets"},
{"name": "--test_mode", "type": str, "default": "pose"},
{"name": "--pkl_file", "type": str, "default": ''},
{"name": "--pkl_root", "type": str, "default": ''},
{"name": "--mode", "type": str, "default": 'eval'},
{"name": "--results_filename", "type": str, "default": 'test'},
{"name": "--vis", "action": 'store_true', "default": False},
])
force = args.force
asset_root = args.asset_root
resolution = {'mug':300000, 'bottle':8000000, 'bowl':1000000}
def batch_panda_sim(cate, filename, mode):
# Here, we define a force list
# where force range from 1/num_envs*force to force:
force_list = None
if args.test_mode=="force":
force_list = torch.linspace(1/args.num_envs*force, force, args.num_envs)
# set random seed
np.random.seed(42)
torch.set_printoptions(precision=4, sci_mode=False)
# acquire gym interface
gym = gymapi.acquire_gym()
# configure sim
sim_params = gymapi.SimParams()
sim_params.up_axis = gymapi.UP_AXIS_Z
sim_params.gravity = gymapi.Vec3(0.0, 0.0, 0.0)
sim_params.dt = 1.0 / 60.0
sim_params.substeps = 2
sim_params.use_gpu_pipeline = args.use_gpu_pipeline
if args.physics_engine == gymapi.SIM_PHYSX:
sim_params.physx.solver_type = 1
sim_params.physx.num_position_iterations = 8
sim_params.physx.num_velocity_iterations = 1
sim_params.physx.rest_offset = 0.0
sim_params.physx.contact_offset = 0.001
sim_params.physx.friction_offset_threshold = 0.001
sim_params.physx.friction_correlation_distance = 0.0005
sim_params.physx.num_threads = args.num_threads
sim_params.physx.use_gpu = args.use_gpu
else:
raise Exception("This example can only be used with PhysX")
# set torch device
device = args.sim_device if args.use_gpu_pipeline else 'cpu'
# create sim
sim = gym.create_sim(args.compute_device_id, args.graphics_device_id, args.physics_engine, sim_params)
if sim is None:
raise Exception("Failed to create sim")
#################################################
# visualize
#################################################
if args.vis:
# create viewer
camera_props = gymapi.CameraProperties()
camera_props.horizontal_fov = 75.0
camera_props.width = 1920
camera_props.height = 1080
camera_props.use_collision_geometry = True
viewer = gym.create_viewer(sim, gymapi.CameraProperties())
if viewer is None:
raise Exception("Failed to create viewer")
#################################################
#################################################
# load shapenet obj asset START
#################################################
# load shapenet obj asset
inst_name, part, _ = filename.split('/')
obj_asset_file = 'urdf/shapenet/{0}/{1}/{2}.urdf'.format(cate, mode, os.path.join(inst_name, part))
asset_options = gymapi.AssetOptions()
asset_options.vhacd_enabled = True
asset_options.vhacd_params.resolution = resolution[args.category]
asset_options.vhacd_params.max_convex_hulls = 40
asset_options.vhacd_params.max_num_vertices_per_ch = 64
obj_asset = gym.load_asset(sim, asset_root, obj_asset_file, asset_options)
with open(os.path.join(args.pkl_root, mode, filename + '.pkl'), 'rb') as f:
grasp_info = pickle.load(f)
num_envs = len(grasp_info['grasp_params'])
grasp_R_in_objcoords = torch.zeros((num_envs, 4), dtype=torch.float32)
grasp_T_in_objcoords = torch.zeros((num_envs, 3), dtype=torch.float32)
scale = grasp_info['gt_scale']
print('gt_scale: ', scale)
width_list = []
for i in range(num_envs):
grasp_RT = get_RT_from_grasp_params(grasp_info['grasp_params'][i], scale)
q = R2q(grasp_RT[:3,:3])
t = grasp_RT[:3,3]
grasp_R_in_objcoords[i] = torch.from_numpy(q)
grasp_T_in_objcoords[i] = torch.from_numpy(t)
width = get_width_from_grasp_params(grasp_info['grasp_params'][i], scale)
width_list.append(width)
grasp_R_in_objcoords = grasp_R_in_objcoords.cuda()
grasp_T_in_objcoords = grasp_T_in_objcoords.cuda()
# load franka asset
franka_asset_file = "urdf/franka_description/robots/franka_panda_gripper.urdf"
asset_options = gymapi.AssetOptions()
asset_options.armature = 0.01
asset_options.fix_base_link = True
asset_options.disable_gravity = True
asset_options.flip_visual_attachments = True
franka_asset = gym.load_asset(sim, asset_root, franka_asset_file, asset_options)
# configure franka dofs
franka_dof_props = gym.get_asset_dof_properties(franka_asset)
franka_upper_limits = franka_dof_props["upper"]
# use position drive for all dofs
franka_dof_props["driveMode"].fill(gymapi.DOF_MODE_POS)
# grippers
franka_dof_props["stiffness"].fill(800.0)
franka_dof_props["damping"].fill(40.0)
# default dof states and position targets
franka_num_dofs = gym.get_asset_dof_count(franka_asset) # 2
# default_dof_pos = np.zeros(franka_num_dofs, dtype=np.float32)
# grippers open
default_dof_pos = franka_upper_limits
default_dof_state = np.zeros(franka_num_dofs, gymapi.DofState.dtype)
# default_dof_state["pos"] = default_dof_pos
# configure env grid
num_per_row = int(math.sqrt(num_envs))
spacing = 1.0
env_lower = gymapi.Vec3(-spacing, -spacing, 0.0)
env_upper = gymapi.Vec3(spacing, spacing, spacing)
print("Creating %d environments" % num_envs)
franka_pose = gymapi.Transform()
franka_pose.p = gymapi.Vec3(0,0,0.5)
obj_pose = gymapi.Transform()
envs = []
obj_idxs = []
# add ground plane
plane_params = gymapi.PlaneParams()
plane_params.normal = gymapi.Vec3(0, 0, 1)
gym.add_ground(sim, plane_params)
for i in range(num_envs):
# create env
env = gym.create_env(sim, env_lower, env_upper, num_per_row)
envs.append(env)
# add obj
obj_pose.p.x = 0
obj_pose.p.y = 0
obj_pose.p.z = 0.5
obj_pose.r = gymapi.Quat.from_axis_angle(gymapi.Vec3(1, 0, 0), math.pi / 2)
z_rot_90 = gymapi.Quat.from_axis_angle(gymapi.Vec3(0, 0, 1), math.pi / 2)
obj_rot_tensor = quat_mul(torch.tensor([z_rot_90.x, z_rot_90.y, z_rot_90.z, z_rot_90.w]),
torch.tensor([obj_pose.r.x, obj_pose.r.y, obj_pose.r.z, obj_pose.r.w]))
obj_pose.r.x, obj_pose.r.y, obj_pose.r.z, obj_pose.r.w = \
obj_rot_tensor[0], obj_rot_tensor[1], obj_rot_tensor[2], obj_rot_tensor[3]
color = gymapi.Vec3(np.random.uniform(0, 1), np.random.uniform(0, 1), np.random.uniform(0, 1))
obj_handle = gym.create_actor(env, obj_asset, obj_pose, "obj", i, 0)
gym.set_actor_scale(env, obj_handle, scale / 0.05)
gym.set_rigid_body_color(env, obj_handle, 0, gymapi.MESH_VISUAL_AND_COLLISION, color)
obj_idx = gym.get_actor_rigid_body_index(env, obj_handle, 0, gymapi.DOMAIN_SIM)
obj_idxs.append(obj_idx)
# add franka
obj_pos_tensor = torch.tensor([obj_pose.p.x, obj_pose.p.y, obj_pose.p.z])
gripper_rot_tensor, gripper_pos_tensor = tf_combine(obj_rot_tensor, obj_pos_tensor,
grasp_R_in_objcoords[i].cpu(), grasp_T_in_objcoords[i].cpu())
franka_pose.p.x, franka_pose.p.y, franka_pose.p.z = \
gripper_pos_tensor[0], gripper_pos_tensor[1], gripper_pos_tensor[2]
franka_pose.r.x, franka_pose.r.y, franka_pose.r.z, franka_pose.r.w = \
gripper_rot_tensor[0], gripper_rot_tensor[1], gripper_rot_tensor[2], gripper_rot_tensor[3]
franka_handle = gym.create_actor(env, franka_asset, franka_pose, "gripper", i, 1)
gym.set_actor_scale(env, franka_handle, 1.0)
# set dof properties
gym.set_actor_dof_properties(env, franka_handle, franka_dof_props)
if args.category == 'bottle':
default_dof_state["pos"] = franka_upper_limits
else:
if width_list[i]*2 > 0.04:
default_dof_state["pos"] = franka_upper_limits
else:
default_dof_state["pos"] = np.array([width_list[i]*2, width_list[i]*2], dtype=np.float32)
# set initial dof states
gym.set_actor_dof_states(env, franka_handle, default_dof_state, gymapi.STATE_ALL)
# set initial position targets
gym.set_actor_dof_position_targets(env, franka_handle, default_dof_state["pos"])
if args.vis:
# point camera at middle env
cam_pos = gymapi.Vec3(4 / 4, 3 / 4, 2 / 4)
cam_target = gymapi.Vec3(-4, -3, 0)
middle_env = envs[num_envs // 2 + num_per_row // 2]
gym.viewer_camera_look_at(viewer, middle_env, cam_pos, cam_target)
num_bodies = gym.get_asset_rigid_body_count(obj_asset) + gym.get_asset_rigid_body_count(franka_asset)
dt_cnt = 0
# ==== prepare tensors =====
# from now on, we will use the tensor API that can run on CPU or GPU
gym.prepare_sim(sim)
gym.simulate(sim)
gym.fetch_results(sim, True)
dt_cnt += 1
# refresh tensors
gym.refresh_rigid_body_state_tensor(sim)
gym.refresh_dof_state_tensor(sim)
gym.refresh_jacobian_tensors(sim)
# get rigid body state tensor
_rb_states = gym.acquire_rigid_body_state_tensor(sim)
rb_states = gymtorch.wrap_tensor(_rb_states)
init_obj_pos = rb_states[obj_idxs, :3].cpu().numpy()
start_time = time.time()
sr_list = []
# simulation loop
while time.time() - start_time < 1000:
# step the physics
gym.simulate(sim)
gym.fetch_results(sim, True)
dt_cnt+=1
# refresh tensors
gym.refresh_rigid_body_state_tensor(sim)
gym.refresh_dof_state_tensor(sim)
gym.refresh_jacobian_tensors(sim)
if dt_cnt > (10 * 60):
grip_acts = torch.Tensor([[0.0, 0.0]] * num_envs).to(device).unsqueeze(-1)
# set new position targets
gym.set_dof_position_target_tensor(sim, gymtorch.unwrap_tensor(grip_acts))
# if time passed more than threshold seconds, set the force
if dt_cnt > (13 * 60):
forces = torch.zeros((num_envs, num_bodies, 3), device=device, dtype=torch.float)
torques = torch.zeros((num_envs, num_bodies, 3), device=device, dtype=torch.float)
if force_list is not None:
forces[:, obj_idxs[0], 2] = force_list
else:
forces[:, obj_idxs[0], 2] = force
gym.apply_rigid_body_force_tensors(sim, gymtorch.unwrap_tensor(forces), gymtorch.unwrap_tensor(torques), gymapi.ENV_SPACE)
# 5s
if dt_cnt == (18 * 60):
obj_pos = rb_states[obj_idxs, :3].cpu().numpy()
success_num = np.sum(np.linalg.norm(obj_pos - init_obj_pos, axis=1) < 0.1)
sr_list.append(100 * success_num / num_envs)
# 10s
elif dt_cnt == (23 * 60):
obj_pos = rb_states[obj_idxs, :3].cpu().numpy()
success_num = np.sum(np.linalg.norm(obj_pos - init_obj_pos, axis=1) < 0.1)
sr_list.append(100 * success_num / num_envs)
# 15s
elif dt_cnt == (28 * 60):
obj_pos = rb_states[obj_idxs, :3].cpu().numpy()
success_num = np.sum(np.linalg.norm(obj_pos - init_obj_pos, axis=1) < 0.1)
sr_list.append(100 * success_num / num_envs)
print("Success Rate: {}%".format(100 * success_num / num_envs))
break
else:
pass
if args.vis:
# update viewer
gym.step_graphics(sim)
gym.draw_viewer(viewer, sim, False)
# gym.sync_frame_time(sim)
# cleanup
if args.vis:
time.sleep(5)
gym.destroy_viewer(viewer)
gym.destroy_sim(sim)
grasp_R_in_objcoords = grasp_R_in_objcoords.cpu()
grasp_T_in_objcoords = grasp_T_in_objcoords.cpu()
forces = forces.cpu()
torques = torques.cpu()
print("total use time : {0}".format(time.time() - start_time))
torch.cuda.empty_cache()
return sr_list
if __name__ == '__main__':
mode = args.mode
file = args.pkl_file
import csv
os.makedirs('isaac_sim/results', exist_ok=True)
f = open(os.path.join('isaac_sim/results', args.results_filename + '.csv'),'a', encoding='utf-8')
csv_writer = csv.writer(f)
file = file.replace('.pkl', '')
print(file)
sr_list = batch_panda_sim(args.category, file, mode)
line = [file]
# for sr in sr_list:
# line.append(sr)
line.append(sr_list[-1])
csv_writer.writerow(line)
f.close()