-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy path07_gbdt_lr.py
193 lines (164 loc) · 7.29 KB
/
07_gbdt_lr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from scipy.sparse.construct import hstack
from sklearn.model_selection import *
from sklearn.metrics import *
from sklearn.datasets.svmlight_format import load_svmlight_file
from sklearn.ensemble.gradient_boosting import GradientBoostingClassifier
from sklearn.linear_model.logistic import LogisticRegression
import numpy as np
import pandas as pd
from sklearn.preprocessing.data import OneHotEncoder
import warnings
import xgboost as xgb
warnings.filterwarnings('ignore')
# 1.读取文件
train = pd.read_csv("new_data/train.csv")
train_target = pd.read_csv('new_data/train_target.csv')
train = train.merge(train_target, on='id')
test = pd.read_csv("new_data/test.csv")
print(train.shape)
print(test.shape)
# 2.合并数据
test['target'] = -1
data = pd.concat([train, test], sort=False, axis=0)
no_feas = ['id', 'target'] + ['certId', 'bankCard', 'dist', 'residentAddr', 'certValidStop', 'certValidBegin']
data['certPeriod'] = data['certValidStop'] - data['certValidBegin']
numerical_features = ['certValidStop', 'certValidBegin', 'lmt', 'age', 'certPeriod']
categorical_features = [fea for fea in data.columns if fea not in numerical_features + no_feas]
data = pd.get_dummies(data, columns=categorical_features)
print(data.shape)
features = [fea for fea in data.columns if fea not in no_feas]
print(features)
train = data.loc[data['target'] != -1, :] # train set
test = data.loc[data['target'] == -1, :] # test set
y = train['target'].values.astype(int)
X = train[features].values
test_data = test[features].values
def gbdt_lr_train():
cv_lr_scores = []
cv_lr_trans_scores = []
cv_lr_trans_raw_scores = []
cv_gbdt_scores = []
skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=2019)
for train_index, valid_index in skf.split(X, y):
X_train = X[train_index]
X_valid = X[valid_index]
y_train = y[train_index]
y_valid = y[valid_index]
# 定义GBDT模型
gbdt = GradientBoostingClassifier(n_estimators=60, max_depth=3, verbose=0, max_features=0.5)
# 训练学习
gbdt.fit(X_train, y_train)
y_pred_gbdt = gbdt.predict_proba(X_valid)[:, 1]
gbdt_auc = roc_auc_score(y_valid, y_pred_gbdt)
print('基于原有特征的gbdt auc: %.5f' % gbdt_auc)
cv_gbdt_scores.append(gbdt_auc)
# lr对原始特征样本模型训练
lr = LogisticRegression()
lr.fit(X_train, y_train) # 预测及AUC评测
y_pred_test = lr.predict_proba(X_valid)[:, 1]
lr_valid_auc = roc_auc_score(y_valid, y_pred_test)
print('基于原有特征的LR AUC: %.5f' % lr_valid_auc)
cv_lr_scores.append(lr_valid_auc)
# GBDT编码原有特征
X_train_leaves = gbdt.apply(X_train)[:, :, 0]
X_valid_leaves = gbdt.apply(X_valid)[:, :, 0]
# 对所有特征进行ont-hot编码
(train_rows, cols) = X_train_leaves.shape
gbdtenc = OneHotEncoder()
X_trans = gbdtenc.fit_transform(np.concatenate((X_train_leaves, X_valid_leaves), axis=0))
# 定义LR模型
lr = LogisticRegression()
# lr对gbdt特征编码后的样本模型训练
lr.fit(X_trans[:train_rows, :], y_train)
# 预测及AUC评测
y_pred_gbdtlr1 = lr.predict_proba(X_trans[train_rows:, :])[:, 1]
gbdt_lr_auc1 = roc_auc_score(y_valid, y_pred_gbdtlr1)
print('基于GBDT特征编码后的LR AUC: %.5f' % gbdt_lr_auc1)
cv_lr_trans_scores.append(gbdt_lr_auc1)
# 定义LR模型
lr = LogisticRegression(n_jobs=-1)
# 组合特征
X_train_ext = hstack([X_trans[:train_rows, :], X_train])
X_valid_ext = hstack([X_trans[train_rows:, :], X_valid])
print(X_train_ext.shape)
# lr对组合特征的样本模型训练
lr.fit(X_train_ext, y_train)
# 预测及AUC评测
y_pred_gbdtlr2 = lr.predict_proba(X_valid_ext)[:, 1]
gbdt_lr_auc2 = roc_auc_score(y_valid, y_pred_gbdtlr2)
print('基于组合特征的LR AUC: %.5f' % gbdt_lr_auc2)
cv_lr_trans_raw_scores.append(gbdt_lr_auc2)
cv_lr = np.mean(cv_lr_scores)
cv_lr_trans = np.mean(cv_lr_trans_scores)
cv_lr_trans_raw = np.mean(cv_lr_trans_raw_scores)
cv_gbdt = np.mean(cv_gbdt_scores)
print("==" * 20)
print("gbdt原始特征cv_gbdt:", cv_gbdt)
print("lr原始特征cv_lr:", cv_lr)
print("lr基于gbdt的特征cv_lr_trans:", cv_lr_trans)
print("lr基于gbdt特征个原始特征cv_lr_trans_raw:", cv_lr_trans_raw)
# gbdt_lr_train()
def xgb_lr_train():
cv_lr_scores = []
cv_lr_trans_scores = []
cv_lr_trans_raw_scores = []
cv_xgb_scores = []
skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=2019)
for train_index, valid_index in skf.split(X, y):
X_train = X[train_index]
X_valid = X[valid_index]
y_train = y[train_index]
y_valid = y[valid_index]
# 定义xgb模型
xgboost = xgb.XGBClassifier(nthread=4, learning_rate=0.08,
n_estimators=100, max_depth=4,
gamma=0, subsample=0.7, colsample_bytree=0.7,
verbosity=1)
# 训练学习
xgboost.fit(X_train, y_train)
y_pred_valid = xgboost.predict_proba(X_valid)[:, 1]
xgb_valid_auc = roc_auc_score(y_valid, y_pred_valid)
print('基于原有特征的xgb auc: %.5f' % xgb_valid_auc)
cv_xgb_scores.append(xgb_valid_auc)
# xgboost编码原有特征
X_train_leaves = xgboost.apply(X_train)
X_valid_leaves = xgboost.apply(X_valid)
# 合并编码后的训练数据和测试数据
All_leaves = np.concatenate((X_train_leaves, X_valid_leaves), axis=0)
All_leaves = All_leaves.astype(np.int32)
# 对所有特征进行ont-hot编码
xgbenc = OneHotEncoder()
X_trans = xgbenc.fit_transform(All_leaves)
(train_rows, cols) = X_train_leaves.shape
# 定义LR模型
lr = LogisticRegression()
# lr对xgboost特征编码后的样本模型训练
lr.fit(X_trans[:train_rows, :], y_train)
# 预测及AUC评测
y_pred_xgblr1 = lr.predict_proba(X_trans[train_rows:, :])[:, 1]
xgb_lr_auc1 = roc_auc_score(y_valid, y_pred_xgblr1)
print('基于Xgb特征编码后的LR AUC: %.5f' % xgb_lr_auc1)
cv_lr_trans_scores.append(xgb_lr_auc1)
# 定义LR模型
lr = LogisticRegression(n_jobs=-1)
# 组合特征
X_train_ext = hstack([X_trans[:train_rows, :], X_train])
X_test_ext = hstack([X_trans[train_rows:, :], X_valid])
# lr对组合特征的样本模型训练
lr.fit(X_train_ext, y_train)
# 预测及AUC评测
y_pred_xgblr2 = lr.predict_proba(X_test_ext)[:, 1]
xgb_lr_auc2 = roc_auc_score(y_valid, y_pred_xgblr2)
print('基于组合特征的LR AUC: %.5f' % xgb_lr_auc2)
cv_lr_trans_raw_scores.append(xgb_lr_auc2)
cv_lr_trans = np.mean(cv_lr_trans_scores)
cv_lr_trans_raw = np.mean(cv_lr_trans_raw_scores)
cv_xgb = np.mean(cv_xgb_scores)
print("==" * 20)
print("xgb原始特征cv_gbdt:", cv_xgb)
print("lr基于xgb的特征cv_lr_trans:", cv_lr_trans)
print("lr基于xgb特征个原始特征cv_lr_trans_raw:", cv_lr_trans_raw)
# xgb_lr_train()
if __name__ == '__main__':
gbdt_lr_train()
xgb_lr_train()