-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathliner trand fire-real data working on real data-loop-wokring12 -3-20103333339-2021.py
160 lines (115 loc) · 4.44 KB
/
liner trand fire-real data working on real data-loop-wokring12 -3-20103333339-2021.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# -*- coding: utf-8 -*-
"""
Created on Thu Dec 22 11:21:29 2016
#the plot wil be upsid its ok the geotif wil be good
@author: yaron
https://chrisalbon.com/statistics/frequentist/spearmans_rank_correlation/
'D:/python course/python_2018/Lesson 7/python7.py'
"""
import numpy as np
import pandas as pd
import scipy.stats
# stack array to make raster time series
DAY1 = np.array([[10, 7, 15], [10, 2, 10]])
DAY2 = np.array([[10, 7, 10], [45, 2, 5]])
DAY3 = np.array([[10, 7, 10], [25, 1, 5]])
stack = np.dstack((DAY1,DAY2,DAY3))
#print stack
#print stack.shape
#print np.mean(stack, axis=2)
#print np.sum(stack, axis=2)
a = stack[1,0,:] # make a time series
#print a
# Create two lists of random values
x = [1,2,3,4,5,6,7,8,9]
y = [2,1,2,4.5,7,6.5,6,9,9.11]
# Create a function that takes in x's and y's
def spearmans_rank_correlation(xs, ys):
# Calculate the rank of x's
xranks = pd.Series(xs).rank()
# Caclulate the ranking of the y's
yranks = pd.Series(ys).rank()
# Calculate Pearson's correlation coefficient on the ranked versions of the data
return scipy.stats.pearsonr(xranks, yranks)
# Run the function
spearmans_rank_correlation(x, y)[0]
scipy.stats.spearmanr(x, y)[0]
import shutil
import numpy as np
import glob
import gdal
import rasterio
import os
from osgeo import gdal_array
import datetime
import xarray as xr
import itertools
import datetime
#linear_trend function
#in order to make time
def linear_trend(x):
pf= np.polyfit(x.time, x, 1)
# we need to return a dataarray or else xarray's groupby won't be happy
return xr.DataArray(pf[0])
def spearmans_correlation(x):
pf,pvale = scipy.stats.spearmanr(x.time, x)
# we need to return a dataarray or else xarray's groupby won't be happy
return xr.DataArray(pf)
#####################################
for_file_number= []
#set working dir
os.chdir('D:/TEST WORKING ON BIG FILE/test p vale')
working_dir = 'D:/TEST WORKING ON BIG FILE/test p vale'
src = rasterio.open('D:/TEST WORKING ON BIG FILE/2001mod13.tif')
#make a mult list with list of file insde it
for folder, subs, files in os.walk(working_dir):
for filename0 in files:
# print filename0[0:4]
for_file_number.append(filename0)
muilt_list = []
num = len(for_file_number)
for a in range(num-1):
#for_file_number[a+1:]
#print a+1
muilt_list.append( for_file_number[a:])
#muilt_list.append( for_file_number[a+1:])
num = len(muilt_list)
x2 = muilt_list[1]
x = muilt_list[0]
folder = 'D:\\TEST WORKING ON BIG FILE\\test p vale'
for folder, subs, files in os.walk(working_dir):
for n in range(num) :
rasters =[]
#print n
for filename in muilt_list[n]:
# print filename
rasterfilename =[]
rasterfilename.append(filename)
aSrcF = gdal_array.LoadFile(os.path.join(folder,filename))
#aSrc = np.flipud(aSrcF)#FILEP THE RASTER
#aSrc[aSrc== -1.79769300e+308] = np.nan
rasters.append(aSrcF)
stackRast = np.dstack(rasters)
# print muilt_list[n][0]
# print stackRast.shape
xr.DataArray(stackRast)
da = xr.DataArray(stackRast, dims=('lat','lon', 'time'))
kwargs = src.meta
src = rasterio.open('D:/TEST WORKING ON BIG FILE/2001mod13.tif')
# print da
# stack lat and lon into a single dimension called allpoints
stacked = da.stack(allpoints=['lat','lon'])
# apply the function over allpoints to calculate the trend at each point
trend = stacked.groupby('allpoints').apply(spearmans_correlation)
trend_unstacked = trend.unstack('allpoints')
#print trend_unstacked
#print trend_unstacked
#trend_unstacked.plot()
#print r'D:\TEST WORKING ON BIG FILE\\'"trnd"+muilt_list[n][0]+"-"+muilt_list[n][-1]
with rasterio.open(r'D:\TEST WORKING ON BIG FILE\\'"trnd"+muilt_list[n][0]+"-"+muilt_list[n][-1], 'w', **kwargs) as dst:
dst.write_band(1, trend_unstacked.astype(rasterio.float32))
del stackRast
del rasters
del stacked
del trend_unstacked
print ("a")