-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathopen_model_zoo_toolkit.py
801 lines (714 loc) · 31.9 KB
/
open_model_zoo_toolkit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
import os
import sys
import subprocess
import math
from math import exp
import cv2
import yaml
import numpy as np
from functools import reduce
try:
from openvino.inference_engine import IECore
except ModuleNotFoundError:
raise ModuleNotFoundError('Failed to import \'OpenVINO\'. Install OpenVINO and set environment variables. https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html')
class ov_model:
ie = IECore()
available_devices = [ 'CPU', 'GPU', 'MYRIAD', 'HDDL', 'FPGA', 'GNA' ]
available_vdevices = [ 'HETERO', 'MULTI' ]
model_categories = [ 'public', 'intel' ]
model_precision = 'FP16'
def __init__(self, device='CPU', model=None, **kwargs):
self.ie = ov_model.ie # not deep copy, use given object
self.net = None
self.exenet = None
self.iblob = []
self.oblob = []
self.modelDir = '.'
self.modelFile = None
self.setDevice(device)
self.postprocess_params = kwargs['kwargs']
self.labels = None
if not model is None:
self.loadModel(model)
def __del__(self):
del self.exenet
del self.net
def checkDevice(self, device):
"""
Check if the device descriptor is acceptable by IE.
Args:
device (string) : Inference device descriptor for IE
Return:
True or False : True = descriptor is acceptable
"""
if ':' in device:
vdevice, devices = device.split(':')
if not vdevice in ov_model.available_vdevices:
return False
devices = devices.split(',')
for device in devices:
if self.checkDevice(device) == False:
return False
elif not device in ov_model.available_devices:
return False
return True
def setDevice(self, device='CPU'):
"""
Set inference device.
Args:
device (string) : OpenVINO Inference engine acceptable device descriptor. ('CPU', 'GPU', 'MYRIAD', 'MULTI:CPU,GPU', ...)
Return:
None
"""
if self.checkDevice(device) == False:
raise Exception('Not supported device ({})'.format(device))
self.device = device
if not self.net is None:
del self.exenet
self.exenet = self.ie.load_network(self.net, self.device, num_requests=4)
def getInterfaceInfo(self):
"""
Obtain information of input and output blob of the model
Args:
None
Returns:
iblob/oblob : [ [ 'name':name0, 'shape':shape0, 'precision':precision0 ], ...]
"""
if self.net is None or self.exenet is None:
return
self.iblob = [ {'name':bname, 'shape':self.net.input_info[bname].tensor_desc.dims, 'precision':self.net.input_info[bname].precision } for bname in self.net.input_info ]
self.oblob = [ {'name':bname, 'shape':self.net.outputs[bname].shape, 'precision':self.net.outputs[bname].precision } for bname in self.net.outputs ]
def loadLabel(self, labelFile):
"""
Load label file.
Args:
labelFile (string) : Label file name
Return:
None
"""
self.labels = None
if os.path.isfile(labelFile):
with open(labelFile, 'rt') as f:
self.labels = [ line.rstrip('\n') for line in f ]
def loadModel(self, modelFile):
"""
Read IR model and load the model to IE.
This function will search the model location under `./public` and `./intel`.
Args:
model : IR model file name without path ('mmmmm.xml')
Return:
None
"""
self.net = None
self.exenet = None
base, ext = os.path.splitext(modelFile)
for modelcat in ov_model.model_categories:
model_dir = os.path.join(self.modelDir, modelcat, base)
if os.path.isdir(model_dir):
modelfile = os.path.join(model_dir, ov_model.model_precision, base)
self.net = self.ie.read_network(modelfile+'.xml', modelfile+'.bin')
self.exenet = self.ie.load_network(self.net, self.device, num_requests=4)
self.getInterfaceInfo()
self.modelFile = modelFile
return
print('Failed to load a model :', modelFile)
def inference(self, ocvimg):
"""
Do inference.
Args:
ocvimg : OpenCV input image for inference.
Return:
res : Inference result returned by OpenVINO IE
"""
iblobName = self.iblob[0]['name']
N,C,H,W = self.iblob[0]['shape']
img = cv2.resize(ocvimg, (W, H))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = img.transpose( (2,0,1) )
img = img.reshape( (1,C,H,W) )
res = self.exenet.infer( { iblobName : img })
return res
# --------------------------- Parsing Algorithms
def bbox_IOU(self, bbox1, bbox2):
"""
Calculate IOU of 2 bboxes. bboxes are in SSD format (7 elements)
bbox = [id, cls, prob, x1, y1, x2, y2]
Args:
bbox1 (bbox)
bbox2 (bbox)
Returns:
IOU value
"""
_xmin, _ymin, _xmax, _ymax = [ 3, 4, 5, 6 ]
width_of_overlap_area = min(bbox1[_xmax], bbox2[_xmax]) - max(bbox1[_xmin], bbox2[_xmin])
height_of_overlap_area = min(bbox1[_ymax], bbox2[_ymax]) - max(bbox1[_ymin], bbox2[_ymin])
if width_of_overlap_area < 0 or height_of_overlap_area < 0:
area_of_overlap = 0
else:
area_of_overlap = width_of_overlap_area * height_of_overlap_area
bbox1_area = (bbox1[_ymax] - bbox1[_ymin]) * (bbox1[_xmax] - bbox1[_xmin])
bbox2_area = (bbox2[_ymax] - bbox2[_ymin]) * (bbox2[_xmax] - bbox2[_xmin])
area_of_union = bbox1_area + bbox2_area - area_of_overlap
if area_of_union == 0:
return 0
return area_of_overlap / area_of_union
def bbox_NMS(self, bboxes, iou_threshold=0.7):
"""
Perform non maximum suppression for bboxes to reject redundunt detections.
bbox = [id, cls, prob, x1, y1, x2, y2]
Args:
bboxes ([bbox,...]):
iou_threshold (float): Threshold value of rejection
Returns:
NMS applied bboxes
"""
_clsid, _prob = [ 1, 2 ]
bboxes = sorted(bboxes, key=lambda x: x[_prob], reverse=True)
for i in range(len(bboxes)):
if bboxes[i][_prob] == -1:
continue
for j in range(i + 1, len(bboxes)):
iou = self.bbox_IOU(bboxes[i], bboxes[j])
if iou > iou_threshold:
bboxes[j][_prob] = -1
res = [ bbox for bbox in bboxes if bbox[_prob]!=-1 ]
return res
def parse_yolo_region_v3(self, blob, resized_image_shape, params, threshold):
"""
Parse YOLO region. This function is intented to be called from decode_yolo_result().
Args:
blob : An output blob of YOLO model inference result (one blob only).
resized_image_shape: Shape information of the resized input image.
params (dict) : YOLO parameters to decode the result
threshold (float) : Threshold value for object rejection
Returns:
objs ([bbox]): bbox = [id, clsId, prob, x1, y1, x2, y2]
"""
def entry_index(side, coord, classes, location, entry):
side_power_2 = side ** 2
n = location // side_power_2
loc = location % side_power_2
return int(side_power_2 * (n * (coord + classes + 1) + entry) + loc)
def scale_bbox(x, y, h, w, class_id, confidence, h_scale, w_scale):
xmin = int((x - w / 2) * w_scale)
ymin = int((y - h / 2) * h_scale)
xmax = int(xmin + w * w_scale)
ymax = int(ymin + h * h_scale)
return [class_id, confidence, xmin, ymin, xmax, ymax]
param_num = 3 if 'num' not in params else int(params['num'])
param_coords = 4 if 'coords' not in params else int(params['coords'])
param_classes = 80 if 'classes' not in params else int(params['classes'])
param_side = int(params['side'])
if 'anchors' not in params:
anchors = [ 10.0, 13.0, 16.0, 30.0, 33.0, 23.0, 30.0, 61.0, 62.0, 45.0, 59.0, 119.0, 116.0, 90.0, 156.0, 198.0, 373.0, 326.0 ]
else:
anchors = [ float(anchor) for anchor in params['anchors'].split(',') ]
if 'mask' not in params:
param_anchors = anchors
param_isYoloV3 = False
else:
if params['mask'] == '':
param_anchors = anchors
param_isYoloV3 = False
else:
masks = [ int(m) for m in params['mask'].split(',')]
param_num = len(masks)
param_anchors = [ [anchors[mask*2], anchors[mask*2+1]] for mask in masks ]
param_isYoloV3 = True
out_blob_h, out_blob_w = blob.shape[-2:]
resized_image_h, resized_image_w = resized_image_shape
objects = list()
predictions = blob.flatten()
side_square = param_side * param_side
for i in range(side_square):
row = i // param_side
col = i % param_side
for n in range(param_num):
obj_index = entry_index(param_side, param_coords, param_classes, n * side_square + i, param_coords)
scale = predictions[obj_index]
if scale < threshold:
continue
box_index = entry_index(param_side, param_coords, param_classes, n * side_square + i, 0)
x = (col + predictions[box_index + 0 * side_square]) / param_side
y = (row + predictions[box_index + 1 * side_square]) / param_side
try:
w_exp = exp(predictions[box_index + 2 * side_square])
h_exp = exp(predictions[box_index + 3 * side_square])
except OverflowError:
continue
w = w_exp * param_anchors[n][0] / (resized_image_w if param_isYoloV3 else param_side)
h = h_exp * param_anchors[n][1] / (resized_image_h if param_isYoloV3 else param_side)
for j in range(param_classes):
class_index = entry_index(param_side, param_coords, param_classes, n * side_square + i,
param_coords + 1 + j)
confidence = scale * predictions[class_index]
if confidence < threshold:
continue
objects.append([0., j, confidence, x-w/2, y-h/2, x+w/2, y+h/2])
return objects
def softmax_channel(self, data):
for i in range(0, len(data), 2):
m=max(data[i], data[i+1])
data[i ] = math.exp(data[i ]-m)
data[i+1] = math.exp(data[i+1]-m)
s=data[i ]+data[i+1]
data[i ]/=s
data[i+1]/=s
return data
def findRoot(self, point, group_mask):
root = point
update_parent = False
while group_mask[root] != -1:
root = group_mask[root]
update_parent = True
if update_parent:
group_mask[point] = root
return root
def join(self, p1, p2, group_mask):
root1 = self.findRoot(p1, group_mask)
root2 = self.findRoot(p2, group_mask)
if root1 != root2:
group_mask[root1] = root2
def get_all(self, points, w, h, group_mask):
root_map = {}
mask = np.zeros((h, w), np.int32)
for px, py in points:
point_root = self.findRoot(px+py*w, group_mask)
if not point_root in root_map:
root_map[point_root] = len(root_map)+1
mask[py, px] = root_map[point_root]
return mask
def decodeImageByJoin(self, segm_data, segm_data_shape, link_data, link_data_shape, segm_conf_thresh, link_conf_thresh):
h = segm_data_shape[1]
w = segm_data_shape[2]
pixel_mask = np.full((h*w,), False, dtype=np.bool)
group_mask = {}
points = []
for i, segm in enumerate(segm_data):
if segm>segm_conf_thresh:
pixel_mask[i] = True
points.append((i%w, i//w))
group_mask[i] = -1
else:
pixel_mask[i] = False
link_mask = np.array([ ld>=link_conf_thresh for ld in link_data ])
neighbours = int(link_data_shape[3])
for px, py in points:
neighbor = 0
for ny in range(py-1, py+1+1):
for nx in range(px-1, px+1+1):
if nx==px and ny==py:
continue
if nx<0 or nx>=w or ny<0 or ny>=h:
continue
pixel_value = pixel_mask[ny*w + nx]
link_value = link_mask [py*w + px*neighbours + neighbor ]
if pixel_value and link_value:
self.join(px+py*w, nx+ny*w, group_mask)
neighbor+=1
return self.get_all(points, w, h, group_mask)
def maskToBoxes(self, mask, min_area, min_height, image_size):
_X, _Y = 0, 1
bboxes = []
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(mask)
max_bbox_idx = int(max_val)
resized_mask = cv2.resize(mask, image_size, interpolation=cv2.INTER_NEAREST)
for i in range(1, max_bbox_idx+1):
bbox_mask = np.where(resized_mask==i, 255, 0).astype(np.uint8)
contours, hierarchy = cv2.findContours(bbox_mask, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
if len(contours)==0:
continue
center, size, angle = cv2.minAreaRect(contours[0])
if min(size[_X], size[_Y]) < min_height:
continue
if size[_X]*size[_Y] < min_area:
continue
bboxes.append((center, size, angle))
return bboxes
def text_detection_postprocess(self, link, segm, image_size, segm_conf_thresh, link_conf_thresh):
_N, _C, _H, _W = 0, 1, 2, 3
kMinArea = 300
kMinHeight = 10
link_shape = link.shape
link_data_size = reduce(lambda a, b: a*b, link_shape)
link_data = link.transpose((_N, _H, _W, _C))
link_data = link_data.flatten()
link_data = self.softmax_channel(link_data)
link_data = link_data.reshape((-1,2))[:,1]
new_link_data_shape = [ link_shape[0], link_shape[2], link_shape[3], link_shape[1]/2 ]
segm_shape = segm.shape
segm_data_size = reduce(lambda a, b: a*b, segm_shape)
segm_data = segm.transpose((_N, _H, _W, _C))
segm_data = segm_data.flatten()
segm_data = self.softmax_channel(segm_data)
segm_data = segm_data.reshape((-1,2))[:,1]
new_segm_data_shape = [ segm_shape[0], segm_shape[2], segm_shape[3], segm_shape[1]/2 ]
mask = self.decodeImageByJoin(segm_data, new_segm_data_shape, link_data, new_link_data_shape,
segm_conf_thresh, link_conf_thresh)
rects = self.maskToBoxes(mask, kMinArea, kMinHeight, image_size)
return rects
# Crop image by rotated rectangle from the input image
def cropRotatedImage(self, image, rect):
def topLeftPoint(points):
big_number = 1e10
_X, _Y = 0, 1
most_left = [big_number, big_number]
almost_most_left = [big_number, big_number]
most_left_idx = -1
almost_most_left_idx = -1
for i, point in enumerate(points):
px, py = point
if most_left[_X]>px:
if most_left[_X]<big_number:
almost_most_left = most_left
almost_most_left_idx = most_left_idx
most_left = [px, py]
most_left_idx = i
if almost_most_left[_X] > px and [px,py]!=most_left:
almost_most_left = [px,py]
almost_most_left_idx = i
if almost_most_left[_Y]<most_left[_Y]:
most_left = almost_most_left
most_left_idx = almost_most_left_idx
return most_left_idx, most_left
_X, _Y, _C = 1, 0, 2
points = cv2.boxPoints(rect).astype(np.int32)
most_left_idx, most_left = topLeftPoint(points)
point0 = points[ most_left_idx ]
point1 = points[(most_left_idx+1) % 4]
point2 = points[(most_left_idx+2) % 4]
target_size = (int(np.linalg.norm(point2-point1, ord=2)), int(np.linalg.norm(point1-point0, ord=2)), 3)
crop = np.full(target_size, 255, np.uint8)
_from = np.array([ point0, point1, point2 ], dtype=np.float32)
_to = np.array([ [0,0], [target_size[_X]-1, 0], [target_size[_X]-1, target_size[_Y]-1] ], dtype=np.float32)
M = cv2.getAffineTransform(_from, _to)
crop = cv2.warpAffine(image, M, (target_size[_X], target_size[_Y]))
return crop
class omz_image_classification(ov_model):
def run(self, ocvimg):
num_results = 5
if 'num_results' in self.postprocess_params:
num_results = self.postprocess_params['num_results']
infres = self.inference(ocvimg)
name = self.oblob[0]['name']
infres = infres[name].ravel()
idx = infres.argsort()[::-1]
if self.labels is None:
res = [ [idx[i], '', infres[idx[i]]] for i in range(num_results) ]
else:
res = [ [idx[i], self.labels[idx[i]], infres[idx[i]]] for i in range(num_results) ]
return res
class omz_object_detection_ssd(ov_model):
def run(self, ocvimg):
infres = self.inference(ocvimg)
name = self.oblob[0]['name']
infres = infres[name].reshape(-1, 7) # reshape to (x, 7)
objs = []
threshold = 0.7
if 'threshold' in self.postprocess_params:
threshold = self.postprocess_params['threshold']
for obj in infres:
imgid, clsid, confidence, x0, y0, x1, y1 = obj
H, W, C = ocvimg.shape
if confidence>threshold: # Draw a bounding box and label when confidence>threshold
clsid = int(clsid)
pt0 = ( int(x0 * W), int(y0 * H) )
pt1 = ( int(x1 * W), int(y1 * H) )
if self.labels is None:
objs.append([ clsid, '', confidence, pt0, pt1 ])
else:
objs.append([ clsid, self.labels[clsid], confidence, pt0, pt1 ])
return objs
class omz_object_detection_yolo_v3(ov_model):
def run(self, ocvimg):
infres = self.inference(ocvimg)
objs = []
threshold = 0.7
if 'threshold' in self.postprocess_params:
threshold = self.postprocess_params['threshold']
iou_threshold = 0.7
if 'iou' in self.postprocess_params:
iou_threshold = self.postprocess_params['iou']
for outblob in self.oblob:
bname = outblob['name']
blob_res = infres[bname]
params = self.net.layers[bname].params
params['side'] = outblob['shape'][-1]
objs += self.parse_yolo_region_v3(
blob = blob_res,
resized_image_shape = self.iblob[0]['shape'][-2:],
params = params,
threshold = threshold )
objs = self.bbox_NMS(objs, iou_threshold = iou_threshold)
return objs
# params = {'anchors': '10,13,16,30,33,23,30,61,62,45,59,119,116,90,156,198,373,326', 'axis': '1', 'classes': '80', 'coords': '4', 'do_softmax': '0', 'end_axis': '3', 'mask': '6,7,8', 'num': '9', 'originalLayersNames': 'conv2d_58/Conv2D/YoloRegion'}
class omz_age_gender_estimation(ov_model):
def run(self, ocvimg):
infres = self.inference(ocvimg)
age = int(infres['age_conv3'].ravel()[0] * 100)
gender_res = infres['prob'].ravel()
if gender_res[0]>gender_res[1]:
return (age, 'female', gender_res[0])
else:
return (age, 'male', gender_res[1])
class omz_head_pose_estimation(ov_model):
def run(self, ocvimg):
infres = self.inference(ocvimg)
yaw = infres['angle_y_fc'].ravel()[0]
pitch = infres['angle_p_fc'].ravel()[0]
roll = infres['angle_r_fc'].ravel()[0]
return (yaw, pitch, roll)
class omz_emotion_estimation(ov_model):
def run(self, ocvimg):
infres = self.inference(ocvimg)
infres = infres[self.oblob[0]['name']].ravel()
idx = infres.argsort()[::-1]
emotion = [ 'neutral', 'happy', 'sad', 'surprise', 'anger' ][idx[0]]
return emotion
class omz_face_landmarks_regression(ov_model):
def run(self, ocvimg):
infres = self.inference(ocvimg)
infres = infres[self.oblob[0]['name']].ravel()
H, W, C = ocvimg.shape
points = [ (int(infres[i]*W), int(infres[i+1]*H)) for i in range(0, infres.size ,2) ]
return points
class omz_text_detection(ov_model):
def run(self, ocvimg):
infres = self.inference(ocvimg)
link = infres['model/link_logits_/add']
segm = infres['model/segm_logits/add']
H, W, C = ocvimg.shape
rects = self.text_detection_postprocess(link, segm, (W,H), 0.7, 0.7)
imgs = []
for rect in rects:
imgs.append(self.cropRotatedImage(ocvimg, rect)) # Cut out the text region
return rects, imgs
try:
# C++ module for human pose estimation to extract the human pose from PAFs and heatmaps.
# This module comes with OpenVINO human_pose_estimation_3d Python demo project.
# You need to build the module to enable this feature.
human_pose_available = True
from pose_extractor import extract_poses
except ModuleNotFoundError:
print('ERROR: extract_pose module is required to postprocess the human-pose-estimation model. It comes with OpenVINO human_pose_estimation_demo_3D demo program and you need to build the module, and then place the module to the current directory.')
print('Run the OpenVINO demo build script with \'-DENABLE_PYTHON=YES\' option to build the human pose estimation Python module.')
human_pose_available = False
class omz_human_pose_estimation(ov_model):
def run(self, ocvimg):
global human_pose_available
if human_pose_available == False:
return None
infres = self.inference(ocvimg)
PAFs = infres['Mconv7_stage2_L1'][0]
HMs = infres['Mconv7_stage2_L2'][0]
people = extract_poses(HMs[:-1], PAFs, 4) # Construct poses from HMs and PAFs
return people
class openvino_omz:
model_categories = [ 'public', 'intel' ]
def __init__(self):
self.openvino_dir = os.environ['INTEL_OPENVINO_DIR']
if self.openvino_dir is None:
raise Exception('OpenVINO environment variables are not set.')
self.omz_dir = os.path.join(self.openvino_dir, 'deployment_tools', 'open_model_zoo')
with open('model_def.yml') as f:
self.model_def = yaml.safe_load(f)
self.ie = IECore()
with open('default_models.yml') as f:
self.default_models = yaml.safe_load(f)
self.ie = IECore()
def __del__(self):
del self.ie
def checkModelCategory(self, omzmodel):
"""
Search OMZ model and determine whether the model belongs to eitgher 'public' or 'intel'.
Args:
omzmodel: OMZ model name
Return:
model category ('public', 'intel', or None)
"""
for modelcat in openvino_omz.model_categories:
if os.path.isfile(os.path.join(self.omz_dir, 'models', modelcat, omzmodel, 'model.yml')):
return modelcat
return None
def downloadModel(self, omzmodel):
"""
Check whether specified OMZ model is existing or not, and download it if it's not existing.
This function will call `model downloader` and `model converter` of OpenVINO to obtain specified OMZ IR model.
Args:
omzmodel: OMZ model name
Return:
None
"""
# omzmodel : omz model name (e.g. googlenet-v1)
model_path = os.path.join(omzmodel, 'FP16')
# Check if IR model is existing
exist = False
for modelcat in openvino_omz.model_categories:
if os.path.isfile(os.path.join(modelcat, model_path, omzmodel+'.xml')) == True:
exist = True
if exist == False: # IR model is not existing. Let's download it.
if os.name == 'nt':
python = 'python'
elif os.name == 'posix':
python = 'python3'
else:
raise Exception('Unknown OS type ({})'.format(os.name))
downloader_path = os.path.join(self.omz_dir, 'tools', 'downloader')
# Download a OMZ model
cmd = [ python , os.path.join(downloader_path, 'downloader.py'), '--name', omzmodel, '--precisions', 'FP16' ]
subprocess.call(cmd)
# Convert the model into IR if the model is a 'public' model
category = self.checkModelCategory(omzmodel)
if category == 'public':
cmd = [ python , os.path.join(downloader_path, 'converter.py'), '--name', omzmodel , '--precisions', 'FP16']
subprocess.call(cmd)
def findModelDef(self, omzmodel):
"""
Search a model definition and return the record in a dictionary.
Args:
omzmodel: OMZ model name
Return:
`model_def` record for the specified omzmodel
"""
for modelinfo in self.model_def:
if modelinfo['name'] == omzmodel:
return modelinfo
return None
def loadModel(self, omzmodel, download=True, **kwargs):
"""
Download the OMZ IR model if the specified model has not been downloaded yet.
Create an `ov_model` object and load the OMZ IR model. The `ov_model` is created based on the description in `model_def.yml`.
Return the created `ov_model` object.
Args:
omzmodel : OMZ model name
download (bool): default=True
kwargs (dict): parameters for postprocessing
Returns:
ov_model object
"""
if download:
self.downloadModel(omzmodel)
modelinfo = self.findModelDef(omzmodel)
objname = modelinfo['object']
obj = globals()[objname](model=omzmodel+'.xml', kwargs=kwargs['kwargs'])
return obj
def getDefaultmodel(self, name):
"""
Get default OMZ model name for a specified task from `default_models.yml`.
Args:
name: Task name to find the default model (image_classification, object_detection, face_detection)
Return:
Default OMZ model name. Return 'None' if the default model is not found.
"""
for model in self.default_models:
if model['task'] == name:
return model['model']
return None
def modelObjectFactory(self, taskName, omzModel=None):
"""
Create `ov_model` for a specified IR model by `omzModel`.
The default IR model will be searched in `default_models.yml` based on `taskName` if `omzModel` is not specified.
Args:
taskName: Name of the NN-task ('image_classification', 'object_detection', ...) used for finding the default IR model from `default_model.yml`
omzModel: This IR model will be used to create the ov_model object if specified. Otherwise, default model will be searched based on taskName.
Return:
ov_model object
"""
if omzModel is None:
omzModel = self.getDefaultmodel(taskName)
modelInfo = self.findModelDef(omzModel)
params = modelInfo['postprocess']
obj = self.loadModel(omzModel, kwargs=params)
if 'label' in modelInfo:
obj.loadLabel(modelInfo['label'])
return obj
# ------------------------------------------------------
def imageClassifier(self, omzmodel=None):
return self.modelObjectFactory('image_classification', omzmodel)
def objectDetector(self, omzmodel=None):
return self.modelObjectFactory('object_detection', omzmodel)
def faceDetector(self, omzmodel=None):
return self.modelObjectFactory('face_detection', omzmodel)
def ageGenderEstimator(self, omzmodel=None):
return self.modelObjectFactory('age_gender', omzmodel)
def headPoseEstimator(self, omzmodel=None):
return self.modelObjectFactory('head_pose', omzmodel)
def emotionEstimator(self, omzmodel=None):
return self.modelObjectFactory('emotion', omzmodel)
def faceLandmarksEstimator(self, omzmodel=None):
return self.modelObjectFactory('face_landmarks', omzmodel)
def textDetector(self, omzmodel=None):
return self.modelObjectFactory('text_detect', omzmodel)
def humanPoseEstimator(self, omzmodel=None):
return self.modelObjectFactory('human_pose', omzmodel)
def ocv_crop(ocvimg, top_left, bottom_right, scale=1.0):
"""
Crop OpenCV image
Args:
ocvimg : OpenCV input image
top_left (tuple) : top-left point of cropping region
bottom_right (tuple) : bottom-right point of cropping region
scale (float) : scale factor for the cropping region
Return:
cropped OpenCV image
"""
if top_left[0]>bottom_right[0] or top_left[1]>bottom_right[1]:
top_left, bottom_right = bottom_right, top_left
w, h = (bottom_right[0]-top_left[0])*scale, (bottom_right[1]-top_left[1])*scale
cx, cy = (bottom_right[0]+top_left[0])//2 , (bottom_right[1]+top_left[1])//2
x1 = max(int(cx - w//2), 0)
y1 = max(int(cy - h//2), 0)
x2 = min(int(cx + w//2), ocvimg.shape[1]-1)
y2 = min(int(cy + h//2), ocvimg.shape[0]-1)
img = ocvimg[y1:y2,x1:x2].copy()
return img
def ocv_rotate(ocvimg, angle_deg):
"""
Rotate OpenCV image. Rotation center is the center of the input image.
Args:
ocvimg : OpenCV input image
angle_deg (float) : Angle to rotate in degree
Return:
Rotated OpenCV image
"""
h, w = ocvimg.shape[:2]
rotmat = cv2.getRotationMatrix2D((w//2, h//2), angle_deg, 1.0)
img = cv2.warpAffine(ocvimg, rotmat, (ocvimg.shape[1], ocvimg.shape[0]))
return img
def renderPeople(img, people, scaleFactor=4, threshold=0.5):
"""
Render people's bones estimated by human_pose_estimator.
Args:
img : OpenCV image
people : Estimated human pose [ [person0], [person1], ...]
scaleFactor (float) : Scale factor of heatmaps and PAFs (default=4)
threshold (float) : Thresold value to determine whether draw or not
Return:
None
"""
if people is None:
return
limbIds = [ [ 1, 2], [ 1, 5], [ 2, 3], [ 3, 4], [ 5, 6],
[ 6, 7], [ 1, 8], [ 8, 9], [ 9, 10], [ 1, 11],
[11, 12], [12, 13], [ 1, 0], [ 0, 14], [14, 16],
[ 0, 15], [15, 17] ]
limbColors = [
(255, 0, 0), (255, 85, 0), (255,170, 0),
(255,255, 0), (170,255, 0), ( 85,255, 0),
( 0,255, 0), ( 0,255, 85), ( 0,255,170),
( 0,255,255), ( 0,170,255), ( 0, 85,255),
( 0, 0,255), ( 85, 0,255), (170, 0,255),
(255, 0,255), (255, 0,170), (255, 0, 85)
]
# 57x32 = resolution of HM and PAF
scalex = img.shape[1]/(57 * scaleFactor)
scaley = img.shape[0]/(32 * scaleFactor)
for person in people:
for i, limbId in enumerate(limbIds):
x1, y1, conf1 = person[ limbId[0]*3 : limbId[0]*3+2 +1 ]
x2, y2, conf2 = person[ limbId[1]*3 : limbId[1]*3+2 +1 ]
if conf1>threshold and conf2>threshold:
cv2.line(img, (int(x1*scalex),int(y1*scaley)), (int(x2*scalex),int(y2*scaley)), limbColors[i], 2)
if __name__ == "__main__":
pass
# test code