-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconsnet_5e_hico_det.py
60 lines (60 loc) · 1.96 KB
/
consnet_5e_hico_det.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# model settings
anno_root = 'data/hico_20160224_det/'
data_root = 'data/hico_det/'
model = dict(
type='ConsNet',
modules=dict(
h_conf=dict(type='ConfBlock'),
o_conf=dict(type='ConfBlock'),
h_emb=dict(
type='MapperBlock',
shared_dims=[1024, 1024],
map_dims=[1024, 1024],
ind_dims=[1024, 512, 1]),
o_emb=dict(
type='MapperBlock',
shared_dims=[1024, 1024],
map_dims=[1024, 1024],
ind_dims=[1024, 512, 1]),
a_emb=dict(
type='FusionBlock',
h_dims=[1024, 512],
o_dims=[1024, 512],
l_dims=[8, 128, 256],
map_dims=[1280, 1024, 1024],
ind_dims=[1280, 512, 1]),
t_emb=dict(
type='FusionBlock',
h_dims=[1024, 512],
o_dims=[1024, 512],
l_dims=[8, 128, 256],
map_dims=[1280, 1024, 1024],
ind_dims=[1280, 512, 1]),
sem_emb=dict(
type='SemanticBlock',
graph=data_root + 'consistency_graph.pkl',
msg_pass_cfg=dict(type='GAT'),
dims=[1024, 4096, 4096, 1024],
heads=[8, 8, 4])),
score_factor=10,
train_cfg=dict(
ind_loss=dict(type='DynamicBCELoss'),
cls_loss=dict(type='DynamicBCELoss', loss_weight=80),
log_vars=dict(ind=[0.5], cls=[0.5])),
test_cfg=dict(ind_thr=0.01))
# dataset settings
dataset_type = 'HICO_DET'
data = dict(
train=dict(
type=dataset_type,
blob=data_root + 'hico_det_train.hdf5',
neg_pos_ub=3,
loader=dict(batch_size=16, num_workers=4, shuffle=True)),
test=dict(
type=dataset_type,
blob=data_root + 'hico_det_test.hdf5',
eval=dict(
anno=anno_root + 'anno_bbox.mat',
score_thr=0.001,
nms=dict(method='linear', hard_thr=1, soft_thr=0)),
loader=dict(batch_size=256, num_workers=4, shuffle=False)))