forked from facebookresearch/FBTT-Embedding
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtt_embeddings_ops.py
934 lines (878 loc) · 31.8 KB
/
tt_embeddings_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import random
from enum import Enum, unique
from typing import Dict, List, Optional, Tuple
import numpy as np
import torch
import tt_embeddings
from torch import nn
@unique
class OptimType(Enum):
SGD = "sgd" # uses non-deterministic updates (atomicAdd(..)) with duplicate ids
EXACT_SGD = (
"exact_sgd" # uses deterministic updates (via sorting + segment reduction)
)
LAMB = "lamb"
ADAM = "adam"
EXACT_ADAGRAD = "exact_adagrad"
EXACT_ROWWISE_ADAGRAD = "exact_row_wise_adagrad"
LARS_SGD = "lars_sgd"
PARTIAL_ROWWISE_ADAM = "partial_row_wise_adam"
PARTIAL_ROWWISE_LAMB = "partial_row_wise_lamb"
def __str__(self):
return self.value
class BufferList(nn.Module):
"""
Similar to nn.ParameterList, but for buffers
"""
def __init__(self, name: str, buffers: Optional[List[torch.Tensor]] = None):
super(BufferList, self).__init__()
self._name = name
self._offset = 0
if buffers is not None:
self.extend(buffers)
self._length = len(buffers)
else:
self._length = 0
def extend(self, buffers: List[torch.Tensor]) -> "BufferList":
for i, buffer in enumerate(buffers):
self.register_buffer(self._name + str(self._length + i), buffer)
self._length += len(buffers)
return self
def append(self, buffer: torch.Tensor) -> "BufferList":
self.register_buffer(self._name + str(self._length), buffer)
self._length += 1
return self
def __len__(self) -> int:
return self._length
def __iter__(self):
self._offset = 0
return self
def __next__(self):
if self._offset < self._length:
self._offset += 1
return getattr(self, self._name + str(self._offset - 1))
else:
raise StopIteration
def __getitem__(self, index: int) -> torch.Tensor:
return getattr(self, self._name + str(index))
def tt_matrix_to_full(
tt_p_shapes: List[int],
tt_q_shapes: List[int],
tt_ranks: List[int],
tt_cores: List[torch.Tensor],
tt_permute: Optional[List[int]] = None,
) -> torch.Tensor:
tt_ndim = len(tt_p_shapes)
if len(tt_ranks) == tt_ndim - 1:
tt_ranks = [1] + tt_ranks + [1]
tt_cores_ = []
if tt_permute is not None:
for i, t in enumerate(tt_cores):
size_tt = [tt_ranks[i], tt_p_shapes[i], tt_q_shapes[i], tt_ranks[i + 1]]
size_tt_permute = [0] * 4
for i in range(4):
size_tt_permute[i] = size_tt[tt_permute[i]]
tt_cores_.append(t.view(*size_tt_permute).permute(*tt_permute).contiguous())
else:
for t in tt_cores:
tt_cores_.append(torch.squeeze(t))
for k in range(tt_ndim):
assert tt_cores_[k].size(0) == tt_ranks[k]
assert tt_cores_[k].size(1) == tt_p_shapes[k]
assert tt_cores_[k].size(2) == tt_q_shapes[k]
assert tt_cores_[k].size(3) == tt_ranks[k + 1]
res = tt_cores_[0]
for i in range(1, tt_ndim):
res = res.view(-1, tt_ranks[i])
curr_core = tt_cores_[i].view(tt_ranks[i], -1)
res = torch.matmul(res, curr_core)
intermediate_shape = []
n_dim = 1
k_dim = 1
for i in range(tt_ndim):
intermediate_shape.append(tt_p_shapes[i])
intermediate_shape.append(tt_q_shapes[i])
n_dim *= tt_p_shapes[i]
k_dim *= tt_q_shapes[i]
res = res.view(*intermediate_shape)
transpose = []
for i in range(0, 2 * tt_ndim, 2):
transpose.append(i)
for i in range(1, 2 * tt_ndim, 2):
transpose.append(i)
res = res.permute(*transpose)
res = res.contiguous().view(n_dim, k_dim).float()
return res
class TTLookupFunction(torch.autograd.Function):
@staticmethod
# pyre-fixme[14]: `forward` overrides method defined in `Function` inconsistently.
def forward(
ctx,
B: int,
D: int,
tt_p_shapes: List[int],
tt_q_shapes: List[int],
tt_ranks: List[int],
L: torch.Tensor,
nnz_tt: int,
nnz_cached: int,
indices: torch.Tensor,
rowidx: torch.Tensor,
tableidx: torch.Tensor,
optimizer: OptimType,
learning_rate: float,
eps: float,
sparse: bool,
cache_locations: torch.Tensor,
cache_optimizer_state: torch.Tensor,
cache_weight: torch.Tensor,
optimizer_state: List[torch.Tensor],
*tt_cores: Tuple[torch.Tensor],
) -> torch.Tensor:
ctx.tt_p_shapes = tt_p_shapes
ctx.tt_q_shapes = tt_q_shapes
ctx.tt_ranks = tt_ranks
ctx.D = D
ctx.optimizer = optimizer
ctx.learning_rate = learning_rate
ctx.eps = eps
ctx.sparse = sparse
ctx.tt_cores = tt_cores
ctx.optimizer_state = optimizer_state
ctx.nnz_tt = nnz_tt
ctx.nnz_cached = nnz_cached
batch_count = 1000
ctx.save_for_backward(
L,
indices,
rowidx,
tableidx,
cache_locations,
cache_optimizer_state,
cache_weight,
)
# pyre-fixme[16]
output = tt_embeddings.tt_forward(
batch_count,
ctx.tt_cores[0].size(0), # num_tables
B,
D,
tt_p_shapes,
tt_q_shapes,
tt_ranks,
L,
nnz_tt,
indices,
rowidx,
tableidx,
list(ctx.tt_cores),
)
if nnz_cached > 0:
# pyre-fixme[16]
tt_embeddings.cache_forward(
B,
nnz_cached,
cache_locations[ctx.nnz_tt :],
rowidx[nnz_tt:],
cache_weight,
output,
)
return output
@staticmethod
# pyre-fixme[14]: `backward` overrides method defined in `Function` inconsistently.
def backward(ctx, d_output: torch.Tensor) -> Tuple[torch.Tensor]:
(
L,
indices,
rowidx,
tableidx,
cache_locations,
cache_optimizer_state,
cache_weight,
) = ctx.saved_tensors
batch_count = 1000
if ctx.sparse:
if ctx.optimizer in [OptimType.SGD, OptimType.EXACT_SGD]:
# pyre-fixme[16]
tt_embeddings.tt_sgd_backward(
batch_count,
ctx.D,
ctx.learning_rate,
ctx.tt_p_shapes,
ctx.tt_q_shapes,
ctx.tt_ranks,
L,
ctx.nnz_tt,
indices,
rowidx,
tableidx,
d_output,
list(ctx.tt_cores),
)
if ctx.nnz_cached > 0:
# pyre-fixme[16]
tt_embeddings.cache_backward_sgd(
ctx.nnz_cached,
d_output,
cache_locations[ctx.nnz_tt :],
rowidx[ctx.nnz_tt :],
ctx.learning_rate,
cache_weight,
)
else:
# pyre-fixme[16]
tt_embeddings.tt_adagrad_backward(
batch_count,
ctx.D,
ctx.learning_rate,
ctx.eps,
ctx.tt_p_shapes,
ctx.tt_q_shapes,
ctx.tt_ranks,
L,
ctx.nnz_tt,
indices,
rowidx,
tableidx,
d_output,
ctx.optimizer_state,
list(ctx.tt_cores),
)
if ctx.nnz_cached > 0:
# pyre-fixme[16]
tt_embeddings.cache_backward_rowwise_adagrad_approx(
ctx.nnz_cached,
d_output,
cache_locations[ctx.nnz_tt :],
rowidx[ctx.nnz_tt :],
ctx.learning_rate,
ctx.eps,
cache_optimizer_state,
cache_weight,
)
# pyre-fixme[7]
return tuple(
[
None, # D
None, # tt_p_shapes
None, # tt_q_shapes
None, # tt_ranks
None, # K
None, # nnz_tt
None, # nnz_cached
None, # indices
None, # offsets
None, # rowidx
None, # tableidx
None, # optimizer
None, # learning_rate
None, # eps
None, # sparse
None, # cache_locations
None, # cache_optimizer_state
None, # cache_weight
None, # optimizer_state
]
+ [None] * len(ctx.tt_cores)
)
else:
# pyre-fixme[16]
d_tt_cores = tt_embeddings.tt_dense_backward(
batch_count,
ctx.D,
ctx.tt_p_shapes,
ctx.tt_q_shapes,
ctx.tt_ranks,
L,
ctx.nnz_tt,
indices,
rowidx,
tableidx,
d_output,
list(ctx.tt_cores),
)
if ctx.nnz_cached > 0:
# pyre-fixme[16]
d_cache_weight = tt_embeddings.cache_backward_dense(
ctx.nnz_cached,
d_output,
cache_locations[ctx.nnz_tt :],
rowidx[ctx.nnz_tt :],
ctx.learning_rate,
cache_weight,
)
else:
d_cache_weight = None
# pyre-fixme[7]
return tuple(
[
None, # D
None, # tt_p_shapes
None, # tt_q_shapes
None, # tt_ranks
None, # K
None, # nnz_tt
None, # nnz_cached
None, # indices
None, # offsets
None, # rowidx
None, # tableidx
None, # optimizer
None, # learning_rate
None, # eps
None, # sparse
None, # cache_locations
None, # cache_optimizer_state
d_cache_weight, # cache_weight
None, # optimizer_state
]
+ d_tt_cores
)
def suggested_tt_shapes( # noqa C901
n: int, d: int = 3, allow_round_up: bool = True
) -> List[int]:
from itertools import cycle, islice
# pyre-fixme[21]
from scipy.stats import entropy
from sympy.ntheory import factorint
from sympy.utilities.iterables import multiset_partitions
def _auto_shape(n: int, d: int = 3) -> List[int]:
def _to_list(x: Dict[int, int]) -> List[int]:
res = []
for k, v in x.items():
res += [k] * v
return res
p = _to_list(factorint(n))
if len(p) < d:
p = p + [1] * (d - len(p))
def _roundrobin(*iterables):
pending = len(iterables)
nexts = cycle(iter(it).__next__ for it in iterables)
while pending:
try:
for next in nexts:
yield next()
except StopIteration:
pending -= 1
nexts = cycle(islice(nexts, pending))
def prepr(x: List[int]) -> Tuple:
x = sorted(np.prod(_) for _ in x)
N = len(x)
xf, xl = x[: N // 2], x[N // 2 :]
return tuple(_roundrobin(xf, xl))
raw_factors = multiset_partitions(p, d)
clean_factors = [prepr(f) for f in raw_factors]
factors = list(set(clean_factors))
# pyre-fixme[16]
weights = [entropy(f) for f in factors]
i = np.argmax(weights)
return list(factors[i])
def _roundup(n: int, k: int) -> int:
return int(np.ceil(n / 10 ** k)) * 10 ** k
if allow_round_up:
weights = []
for i in range(len(str(n))):
n_i = _roundup(n, i)
# pyre-fixme[16]
weights.append(entropy(_auto_shape(n_i, d=d)))
i = np.argmax(weights)
factors = _auto_shape(_roundup(n, i), d=d)
else:
factors = _auto_shape(n, d=d)
return factors
class TableBatchedTTEmbeddingBag(torch.nn.Module):
"""
TT embedding bag that supports looking up multiple tables in one pass.
It has to satisfy the constraint that all tables have the same num_embeddings and embedding_dim
"""
__constants__ = [
"num_tables",
"num_embeddings",
"embedding_dim",
"tt_shape",
"tt_rank",
]
def __init__(
self,
num_tables: int,
num_embeddings: int,
embedding_dim: int,
tt_ranks: List[int],
tt_p_shapes: Optional[List[int]] = None,
tt_q_shapes: Optional[List[int]] = None,
optimizer: OptimType = OptimType.SGD,
learning_rate: float = 0.1,
eps: float = 1.0e-10,
sparse: bool = True,
use_cache: bool = False,
cache_size: int = 0,
hashtbl_size: int = 0,
weight_dist: str = "approx-normal",
enforce_embedding_dim: bool = False,
) -> None:
super(TableBatchedTTEmbeddingBag, self).__init__()
assert torch.cuda.is_available()
assert num_tables > 0
assert num_embeddings > 0
assert embedding_dim > 0
assert num_tables == 1 or not use_cache, "cannot use cache when num_tables != 1"
self.tt_p_shapes: List[int] = (
suggested_tt_shapes(num_embeddings, len(tt_ranks) + 1)
if tt_p_shapes is None
else tt_p_shapes
)
self.tt_q_shapes: List[int] = (
# if enforce_embedding_dim=True, we make sure that
# prod(tt_q_shapes) == embedding_dim by disabling round up
suggested_tt_shapes(
embedding_dim,
len(tt_ranks) + 1,
allow_round_up=(not enforce_embedding_dim),
)
if tt_q_shapes is None
else tt_q_shapes
)
assert len(self.tt_p_shapes) >= 2
assert len(self.tt_p_shapes) <= 4
assert len(tt_ranks) + 1 == len(self.tt_p_shapes)
assert len(self.tt_p_shapes) == len(self.tt_q_shapes)
assert all(v > 0 for v in self.tt_p_shapes)
assert all(v > 0 for v in self.tt_q_shapes)
assert all(v > 0 for v in tt_ranks)
assert np.prod(np.array(self.tt_p_shapes)) >= num_embeddings
assert np.prod(np.array(self.tt_q_shapes)) == embedding_dim
self.num_tables = num_tables
self.tt_ndim = len(tt_ranks) + 1
self.num_embeddings = num_embeddings
self.embedding_dim = embedding_dim
self.tt_ranks = [1] + tt_ranks + [1]
self.sparse = sparse
self.optimizer = optimizer
self.learning_rate = learning_rate
self.eps = eps
logging.info(
f"Creating TTEmbeddingBag "
f"tt_p_shapes: {self.tt_p_shapes}, "
f"tt_q_shapes: {self.tt_q_shapes}, "
f"tt_ranks: {self.tt_ranks}, "
f"sparse: {self.sparse}, "
f"optimizer: {self.optimizer}, "
f"learning_rate: {self.learning_rate}, "
f"eps: {self.eps}"
f"use_cache: {use_cache}, "
f"cache_size: {cache_size}, "
f"hashtbl_size: {hashtbl_size}"
)
L = []
L_value = 1
for t in range(self.tt_ndim):
L.append(L_value)
L_value *= self.tt_p_shapes[self.tt_ndim - t - 1]
L.reverse()
self.register_buffer("L", torch.tensor(L, dtype=torch.int64))
self.tt_cores = torch.nn.ParameterList()
self.optimizer_state = BufferList("optimizer_state")
for i in range(self.tt_ndim):
self.tt_cores.append(
torch.nn.Parameter(
torch.empty(
[
self.num_tables,
self.tt_p_shapes[i],
self.tt_ranks[i]
* self.tt_q_shapes[i]
* self.tt_ranks[i + 1],
],
device=torch.cuda.current_device(),
dtype=torch.float32,
)
)
)
optimizer_state_shape = (
self.tt_cores[i].shape
if self.optimizer not in [OptimType.SGD, OptimType.EXACT_SGD]
else 0
)
self.optimizer_state.append(
torch.zeros(
optimizer_state_shape,
device=torch.cuda.current_device(),
dtype=torch.float32,
)
)
self.reset_parameters(weight_dist)
self.use_cache = use_cache
if use_cache:
if cache_size <= 0:
cache_size = int(0.1 * self.num_embeddings)
if hashtbl_size <= 0:
hashtbl_size = self.num_embeddings
assert hashtbl_size >= cache_size
self.register_buffer(
"hashtbl",
torch.empty(
hashtbl_size, device=torch.cuda.current_device(), dtype=torch.int64
).fill_(-1),
)
self.register_buffer(
"cache_freq",
torch.zeros(
hashtbl_size, device=torch.cuda.current_device(), dtype=torch.int64
),
)
self.register_buffer(
"cache_state",
torch.empty(
hashtbl_size, device=torch.cuda.current_device(), dtype=torch.int32
).fill_(-1),
)
self.cache_weight = nn.Parameter(
torch.zeros(
(cache_size, self.embedding_dim),
device=torch.cuda.current_device(),
dtype=torch.float32,
)
)
if self.sparse and optimizer not in (OptimType.SGD, OptimType.EXACT_SGD):
optimizer_state_shape = (
(cache_size, self.embedding_dim)
if optimizer == OptimType.EXACT_ADAGRAD
else (cache_size)
)
self.register_buffer(
"cache_optimizer_state",
torch.zeros(optimizer_state_shape, dtype=torch.float32),
)
else:
self.cache_optimizer_state = None
else:
self.register_buffer(
"hashtbl",
torch.empty(0, device=torch.cuda.current_device(), dtype=torch.int64),
)
self.register_buffer(
"cache_state",
torch.empty(0, device=torch.cuda.current_device(), dtype=torch.int32),
)
self.cache_optimizer_state = None
self.cache_weight = None
self.warmup = True
def full_weight(self) -> torch.Tensor:
assert (
self.num_tables == 1
), "full_weight() only supported for num_tables == 1 for now"
return tt_matrix_to_full(
self.tt_p_shapes,
self.tt_q_shapes,
self.tt_ranks,
self.tt_cores,
[1, 0, 2, 3],
)
def reset_parameters(self, weight_dist: str) -> None: # noqa C901
assert weight_dist in [
"uniform",
"naive-uniform",
"normal",
"approx-uniform",
"approx-normal",
]
if weight_dist == "uniform":
lamb = 2.0 / (self.num_embeddings + self.embedding_dim)
stddev = np.sqrt(lamb)
tt_ranks = np.array(self.tt_ranks)
cr_exponent = -1.0 / (2 * self.tt_ndim)
var = np.prod(tt_ranks ** cr_exponent)
core_stddev = stddev ** (1.0 / self.tt_ndim) * var
for i in range(self.tt_ndim):
torch.nn.init.uniform_(self.tt_cores[i], 0.0, core_stddev)
elif weight_dist == "naive-uniform":
for i in range(self.tt_ndim):
torch.nn.init.uniform_(
self.tt_cores[i], 0.0, 1 / np.sqrt(self.num_embeddings)
)
elif weight_dist == "normal":
mu = 0.0
sigma = 1.0 / np.sqrt(self.num_embeddings)
scale = 1.0 / self.tt_ranks[0]
for i in range(self.tt_ndim):
torch.nn.init.normal_(self.tt_cores[i], mu, sigma)
self.tt_cores[i].data *= scale
elif weight_dist == "approx-normal":
mu = 0.0
sigma = 1.0
scale = np.power(1 / np.sqrt(3 * self.num_embeddings), 1 / 3)
for i in range(self.tt_ndim):
W = np.random.normal(
loc=mu, scale=sigma, size=np.asarray(self.tt_cores[i].shape)
).astype(np.float32)
core_shape = self.tt_cores[i].shape
W = W.flatten()
for ele in range(W.shape[0]):
while np.abs(W[ele]) < 2:
W[ele] = np.random.normal(loc=mu, scale=sigma, size=[1]).astype(
np.float32
)
W = np.reshape(W, core_shape)
W *= scale
self.tt_cores[i].data = torch.tensor(W, requires_grad=True)
elif weight_dist == "approx-uniform":
def _flat_saw_tooth(nb_gridpts: int, width: float, nb_samples: int = 1):
"""
This is a "flat saw tooth" distribution
that is, the density function is a sum of
j*delta + uniform(-width/2, width/2), width < delta/2 in general
a finite train of flat tooth with space in between
The idea is that when this density function convolved
with a very narrow gaussian-like distribution
the space will be filled up and the result looks like a uniform distribiution
"""
N = nb_gridpts
delta = 1.0 / N
j = np.random.randint(-(N - 1), N, nb_samples)
x = -width / 2.0 + width * np.random.rand(nb_samples)
return j * delta + x
def _gen_block(
dist: str, dim: List[int], center: float, param: float
) -> np.ndarray:
nb_samples = (np.array(dim)).prod()
if dist == "gaussian":
B = center + np.random.randn(nb_samples) * param
elif dist == "uniform":
B = center - (param / 2.0) + param * np.random.rand(nb_samples)
else:
assert 0, f"Does not support {dist} distribution"
# pyre-fixme[16]
B = B.reshape(dim)
return B
def _gen_head(dim: List[int], sigma: float = 0.01) -> np.ndarray:
# expect dim = (1, m1, n1, r1) where r1 is the tensor train rank
scale = 1.0 / np.sqrt(dim[-1])
size = (np.array(dim)).prod()
B = _gen_block("gaussian", size, scale, sigma)
B = B.reshape(dim)
return B
def _gen_tail(
dim: List[int],
sigma: float = 0.01,
nb_gridpts: int = 15,
width: float = 0.7 / 30.0,
):
"""
expect dim = (r3, m3, n3, 1); r3 is the tensor train rank
in our scheme here, all the elements are small, N(0,sigma^2)
except on each possible m, n there is one random odd r
such that (r, m, n, 1) follows a saw tooth distribution
"""
# first generate all the backgrounds as one big block
B = _gen_block("gaussian", dim, 0.0, sigma)
# generate the needed saw tooth distribution
r3 = dim[0]
B = B.reshape(r3, -1)
nb_samples = B.shape[1]
values = _flat_saw_tooth(nb_gridpts, width, nb_samples=nb_samples)
for ell in range(nb_samples):
p = random.randrange(1, r3, 2)
B[p, ell] = values[ell]
B = B.reshape(dim)
return B
def _gen_mid(
dim: List[int],
sigma: float = 0.01,
nb_gridpts: int = 15,
width: float = 0.7 / 30.0,
):
"""
expect dim = (r2, m2, n2, r3)
in our scheme, all the elements are in general close to 1/sqrt(r2)
so that the product with the head yield
values close to 1
but for each specific value of (m,n) in the range of (m2,n2)
we pick a random even index k in range of r3 such that we
make the vector (:,m,n,k) to be small except
for one random j in range of r2 so that the value (j,m,n,k)
is drawn for a saw tooth distribution
so the total number of needed saw tooth samples is m2 x n2
"""
r2, m2, n2, r3 = dim
scale = 1.0 / np.sqrt(r2)
B = _gen_block("gaussian", dim, scale, sigma)
B = B.reshape(r2, m2 * n2, r3)
values = _flat_saw_tooth(nb_gridpts, width, nb_samples=m2 * n2) / scale
for ell in range(m2 * n2):
p = random.randrange(0, r3, 2)
v = np.random.randn(r2) * (sigma * sigma / scale)
B[:, ell, p] = v
j = random.randrange(r2)
B[j, ell, p] = values[ell]
B = B.reshape(dim)
return B
assert self.tt_ndim == 3
assert (
self.num_tables == 1
), "approx_uniform only supported for num_tables == 1"
scale = 1.0 / (np.sqrt(self.num_embeddings) ** (1.0 / 3.0))
shapes = []
for i in range(self.tt_ndim):
core_shape = [
self.tt_ranks[i],
self.tt_p_shapes[i],
self.tt_q_shapes[i],
self.tt_ranks[i + 1],
]
shapes.append(core_shape)
W0 = _gen_head(shapes[0], sigma=0.01)
W0 = W0 * scale
W0 = W0.transpose([1, 0, 2, 3]).reshape(
(self.num_tables, self.tt_p_shapes[0], -1)
)
W0 = W0.astype(np.float32)
W1 = _gen_mid(shapes[1], sigma=0.01)
W1 = W1 * scale
W1 = W1.astype(np.float32)
W1 = W1.transpose([1, 0, 2, 3]).reshape(
(self.num_tables, self.tt_p_shapes[1], -1)
)
W2 = _gen_tail(shapes[2], sigma=0.01)
W2 = W2 * scale
W2 = W2.astype(np.float32)
W2 = W2.transpose([1, 0, 2, 3]).reshape(
(self.num_tables, self.tt_p_shapes[2], -1)
)
self.tt_cores[0].data = torch.tensor(W0, requires_grad=True)
self.tt_cores[1].data = torch.tensor(W1, requires_grad=True)
self.tt_cores[2].data = torch.tensor(W2, requires_grad=True)
def reset_cache(self):
if self.use_cahce:
self.hashtbl.fill_(-1)
self.cache_freq.fill_(0)
self.cache_state.fill_(-1)
def cache_populate(self):
if self.use_cache:
tt_embeddings.cache_populate(
self.num_embeddings,
self.tt_p_shapes,
self.tt_q_shapes,
self.tt_ranks,
self.tt_cores,
self.L,
self.hashtbl,
self.cache_freq,
self.cache_state,
self.cache_weight,
)
self.warmup = False
def update_cache(self, indices: torch.Tensor):
if self.use_cache:
# pyre-fixme[16]
tt_embeddings.update_cache_state(indices, self.hashtbl, self.cache_freq)
def forward(
self, indices: torch.Tensor, offsets: torch.Tensor, warmup: bool = True
) -> torch.Tensor:
(indices, offsets) = indices.long(), offsets.long()
# update hash table and lfu state
self.update_cache(indices)
# preprocess indices
(
indices,
rowidx,
tableidx,
num_tt_indices,
cache_locations,
# pyre-fixme[16]
) = tt_embeddings.preprocess_indices_sync(
indices,
offsets,
self.num_tables,
self.warmup,
# pyre-fixme[16]
self.hashtbl,
# pyre-fixme[16]
self.cache_state,
)
num_cached = indices.numel() - num_tt_indices
# pyre-fixme[16]
output = TTLookupFunction.apply(
# self.num_tables should be able to divide offsets.numel() - 1
(offsets.numel() - 1) // self.num_tables,
self.embedding_dim,
self.tt_p_shapes,
self.tt_q_shapes,
self.tt_ranks,
# pyre-fixme[16]
self.L,
num_tt_indices,
num_cached,
indices,
rowidx,
tableidx,
self.optimizer,
self.learning_rate,
self.eps,
self.sparse,
cache_locations,
self.cache_optimizer_state,
self.cache_weight,
list(self.optimizer_state),
*(self.tt_cores),
)
return output
def set_learning_rate(self, lr: float) -> None:
"""
Sets the learning rate.
"""
self.learning_rate = lr
def get_params(self) -> List[torch.Tensor]:
params = self.tt_cores
if self.use_cache:
params.append(self.cache_weight)
return params
class TTEmbeddingBag(TableBatchedTTEmbeddingBag):
"""
TTEmbedding lookup for exactly one table
"""
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
tt_ranks: List[int],
tt_p_shapes: Optional[List[int]] = None,
tt_q_shapes: Optional[List[int]] = None,
optimizer: OptimType = OptimType.SGD,
learning_rate: float = 0.1,
eps: float = 1.0e-10,
sparse: bool = True,
use_cache: bool = True,
cache_size: int = 0,
hashtbl_size: int = 0,
weight_dist: str = "approx-normal",
enforce_embedding_dim: bool = False,
) -> None:
super().__init__(
1, # num_tables = 1
num_embeddings,
embedding_dim,
tt_ranks,
tt_p_shapes,
tt_q_shapes,
optimizer,
learning_rate,
eps,
sparse,
use_cache,
cache_size,
hashtbl_size,
weight_dist,
enforce_embedding_dim,
)
def forward(
self, indices: torch.Tensor, offsets: torch.Tensor, warmup: bool = True
) -> torch.Tensor:
return super().forward(indices, offsets, warmup)[
0
] # there should be only one table