-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
267 lines (230 loc) · 10.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import argparse
import logging
import os
import mxnet as mx
import mxnet.optimizer as optimizer
import numpy as np
from utils import mobilenet
from utils import resnet
from utils.data import FaceImageIter
logger = logging.getLogger()
logger.setLevel(logging.INFO)
AGE = 100
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--gpu_ids', type=str, default='0', help='use gpu id to train')
parser.add_argument('--data_dir', type=str, default='dataset', help='training set directory')
parser.add_argument('--prefix', type=str, default='model/model', help='directory to save model.')
parser.add_argument('--pretrained', type=str, default='', help='pretrained model to load')
parser.add_argument('--end_epoch', type=int, default=200, help='training epoch size.')
parser.add_argument('--network', type=str, default='m50', help='specify network, r50 or m50')
parser.add_argument('--data_shape', type=str, default='3,112,112', help='specify input image height and width')
parser.add_argument('--version_input', type=int, default=1, help='network input config')
parser.add_argument('--version_output', type=str, default='GAP', help='network embedding output config')
parser.add_argument('--lr', type=float, default=0.1, help='start learning rate')
parser.add_argument('--lr-steps', type=str, default='10,30,80,150,200', help='steps of lr changing')
parser.add_argument('--batch_size', type=int, default=128, help='batch size in each context')
parser.add_argument('--rand_mirror', type=int, default=1, help='if do random mirror in training')
parser.add_argument('--cutoff', type=int, default=0, help='cut off aug')
parser.add_argument('--color', type=int, default=0, help='color jittering aug')
args = parser.parse_args()
return args
class AccMetric(mx.metric.EvalMetric):
def __init__(self):
self.axis = 1
super(AccMetric, self).__init__('acc', axis=self.axis, output_names=None, label_names=None)
self.losses = []
self.count = 0
def update(self, labels, preds):
self.count += 1
label = labels[0].asnumpy()[:, 0:1]
pred_label = preds[-1].asnumpy()[:, 0:2]
pred_label = np.argmax(pred_label, axis=self.axis)
pred_label = pred_label.astype('int32').flatten()
label = label.astype('int32').flatten()
assert label.shape == pred_label.shape
self.sum_metric += (pred_label.flat == label.flat).sum()
self.num_inst += len(pred_label.flat)
class LossValueMetric(mx.metric.EvalMetric):
def __init__(self):
self.axis = 1
super(LossValueMetric, self).__init__('lossvalue', axis=self.axis, output_names=None, label_names=None)
self.losses = []
def update(self, labels, preds):
loss = preds[-1].asnumpy()[0]
self.sum_metric += loss
self.num_inst += 1.0
class MAEMetric(mx.metric.EvalMetric):
def __init__(self):
self.axis = 1
super(MAEMetric, self).__init__('MAE', axis=self.axis, output_names=None, label_names=None)
self.losses = []
self.count = 0
def update(self, labels, preds):
self.count += 1
label = labels[0].asnumpy()
label_age = np.count_nonzero(label[:, 1:], axis=1)
pred_age = np.zeros(label_age.shape, dtype=np.int)
pred = preds[-1].asnumpy()
for i in range(AGE):
_pred = pred[:, 2 + i * 2:4 + i * 2]
_pred = np.argmax(_pred, axis=1)
pred_age += _pred
mae = np.mean(np.abs(label_age - pred_age))
self.sum_metric += mae
self.num_inst += 1.0
class CUMMetric(mx.metric.EvalMetric):
def __init__(self, n=5):
self.axis = 1
self.n = n
super(CUMMetric, self).__init__('CUM_%d' % n, axis=self.axis, output_names=None, label_names=None)
self.losses = []
self.count = 0
def update(self, labels, preds):
self.count += 1
label = labels[0].asnumpy()
label_age = np.count_nonzero(label[:, 1:], axis=1)
pred_age = np.zeros(label_age.shape, dtype=np.int)
pred = preds[-1].asnumpy()
for i in range(AGE):
_pred = pred[:, 2 + i * 2:4 + i * 2]
_pred = np.argmax(_pred, axis=1)
pred_age += _pred
diff = np.abs(label_age - pred_age)
cum = np.sum((diff < self.n))
self.sum_metric += cum
self.num_inst += len(label_age)
def get_symbol(args, arg_params, aux_params):
if args.network[0] == 'm':
fc1 = mobilenet.get_symbol(AGE * 2 + 2,
version_input=args.version_input,
version_output=args.version_output)
else:
fc1 = resnet.get_symbol(AGE * 2 + 2, args.num_layers,
version_input=args.version_input,
version_output=args.version_output)
label = mx.symbol.Variable('softmax_label')
gender_label = mx.symbol.slice_axis(data=label, axis=1, begin=0, end=1)
gender_label = mx.symbol.reshape(gender_label, shape=(args.batch_size,))
gender_fc1 = mx.symbol.slice_axis(data=fc1, axis=1, begin=0, end=2)
gender_softmax = mx.symbol.SoftmaxOutput(data=gender_fc1, label=gender_label, name='gender_softmax',
normalization='valid', use_ignore=True, ignore_label=9999)
outs = [gender_softmax]
for i in range(AGE):
age_label = mx.symbol.slice_axis(data=label, axis=1, begin=i + 1, end=i + 2)
age_label = mx.symbol.reshape(age_label, shape=(args.batch_size,))
age_fc1 = mx.symbol.slice_axis(data=fc1, axis=1, begin=2 + i * 2, end=4 + i * 2)
age_softmax = mx.symbol.SoftmaxOutput(data=age_fc1, label=age_label, name='age_softmax_%d' % i,
normalization='valid', grad_scale=1)
outs.append(age_softmax)
outs.append(mx.sym.BlockGrad(fc1))
out = mx.symbol.Group(outs)
return out, arg_params, aux_params
def train_net(args):
ctx = []
# 设置使用GPU或者CPU训练
gpu_ids = args.gpu_ids.split(',')
for gpu_id in gpu_ids:
ctx.append(mx.gpu(int(gpu_id)))
if len(ctx) == 0:
ctx = [mx.cpu()]
print('use cpu')
else:
print('gpu num:', len(ctx))
prefix_dir = os.path.dirname(args.prefix)
if not os.path.exists(prefix_dir):
os.makedirs(prefix_dir)
args.ctx_num = len(ctx)
args.num_layers = int(args.network[1:])
print('num_layers', args.num_layers)
args.batch_size = args.batch_size * args.ctx_num
args.rescale_threshold = 0
args.image_channel = 3
data_dir_list = args.data_dir.split(',')
assert len(data_dir_list) == 1
data_dir = data_dir_list[0]
data_shape = [int(x) for x in args.data_shape.split(',')]
assert len(data_shape) == 3
assert data_shape[1] == data_shape[2]
args.image_h = data_shape[1]
args.image_w = data_shape[2]
print('data_shape', data_shape)
path_imgrec = os.path.join(data_dir, "train.rec")
path_imgrec_val = os.path.join(data_dir, "val.rec")
print('Called with argument:', args)
data_shape = tuple(data_shape)
mean = None
begin_epoch = 0
if len(args.pretrained) == 0:
arg_params = None
aux_params = None
sym, arg_params, aux_params = get_symbol(args, arg_params, aux_params)
else:
# 加载预训练模型
vec = args.pretrained.split(',')
print('loading', vec)
begin_epoch = int(vec[1])
_, arg_params, aux_params = mx.model.load_checkpoint(vec[0], int(vec[1]))
sym, arg_params, aux_params = get_symbol(args, arg_params, aux_params)
model = mx.mod.Module(context=ctx, symbol=sym)
train_dataiter = FaceImageIter(batch_size=args.batch_size,
data_shape=data_shape,
path_imgrec=path_imgrec,
shuffle=True,
rand_mirror=args.rand_mirror,
mean=mean,
cutoff=args.cutoff,
color_jittering=args.color)
val_dataiter = FaceImageIter(batch_size=args.batch_size,
data_shape=data_shape,
path_imgrec=path_imgrec_val,
shuffle=False,
rand_mirror=False,
mean=mean)
metric = mx.metric.CompositeEvalMetric([AccMetric(), MAEMetric(), CUMMetric()])
if args.network[0] == 'r':
initializer = mx.init.Xavier(rnd_type='gaussian', factor_type="out", magnitude=2)
else:
initializer = mx.init.Xavier(rnd_type='uniform', factor_type="in", magnitude=2)
_rescale = 1.0 / args.ctx_num
opt = optimizer.SGD(learning_rate=args.lr, momentum=0.9, wd=0.0005, rescale_grad=_rescale)
som = 20
_cb = mx.callback.Speedometer(args.batch_size, som)
lr_steps = [int(x) for x in args.lr_steps.split(',')]
def _batch_callback(param):
_cb(param)
# 每轮结束回调函数
def _epoch_callback(epoch, symbol, arg_params, aux_params):
epoch = epoch + 1
for _lr in lr_steps:
if epoch == _lr:
opt.lr *= 0.1
print('lr change to', opt.lr)
break
# 保存模型
if epoch % 10 == 0 or epoch == args.end_epoch:
print('lr-epoch:', opt.lr, epoch)
arg, aux = model.get_params()
all_layers = model.symbol.get_internals()
_sym = all_layers['fc1_output']
mx.model.save_checkpoint(args.prefix, epoch, _sym, arg, aux)
train_dataiter = mx.io.PrefetchingIter(train_dataiter)
print('开始训练...')
model.fit(train_dataiter,
begin_epoch=begin_epoch,
num_epoch=args.end_epoch,
eval_data=val_dataiter,
eval_metric=metric,
kvstore='device',
optimizer=opt,
initializer=initializer,
arg_params=arg_params,
aux_params=aux_params,
allow_missing=True,
batch_end_callback=_batch_callback,
epoch_end_callback=_epoch_callback)
def main():
args = parse_args()
train_net(args)
if __name__ == '__main__':
main()