-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy patheval.py
69 lines (56 loc) · 2.58 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import argparse
import functools
import numpy as np
import tensorflow as tf
from tqdm import tqdm
from sklearn.metrics.pairwise import cosine_similarity
from utils.reader import load_audio
from utils.utility import add_arguments, print_arguments, compute_eer
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg('enroll_list', str, 'dataset/enroll_list.txt', '注册数据列表路径')
add_arg('trials_list', str, 'dataset/trials_list.txt', '检索数据列表路径')
add_arg('input_shape', str, '(1, 257, 257)', '数据输入的形状')
add_arg('model_path', str, 'models/best_model/infer_model.h5', '预测模型的路径')
args = parser.parse_args()
print_arguments(args)
# 加载模型
model = tf.keras.models.load_model(args.model_path)
model = tf.keras.models.Model(inputs=model.input, outputs=model.get_layer('batch_normalization').output)
# 预测音频
def infer(audio_path):
input_shape = eval(args.input_shape)
data = load_audio(audio_path, mode='test', spec_len=input_shape[2])
data = data[np.newaxis, :]
# 执行预测
feature = model.predict(data, verbose=0)
return feature[0]
def get_all_audio_feature(list_path):
with open(list_path, 'r', encoding='utf-8') as f:
lines = f.readlines()
features, labels = [], []
print('开始提取全部的音频特征...')
for line in tqdm(lines):
path, label = line.replace('\n', '').split('\t')
feature = infer(path)
features.append(feature)
labels.append(int(label))
return features, labels
def main():
enroll_features, enroll_labels = get_all_audio_feature(args.enroll_list)
trials_features, trials_labels = get_all_audio_feature(args.trials_list)
print('开始对比音频特征...')
all_score, all_labels = [], []
for i in tqdm(range(len(trials_features)), desc='特征对比'):
trials_feature = np.expand_dims(trials_features[i], 0).repeat(len(enroll_features), axis=0)
score = cosine_similarity(trials_feature, enroll_features).tolist()[0]
trials_label = np.expand_dims(trials_labels[i], 0).repeat(len(enroll_features), axis=0)
y_true = np.array(enroll_labels == trials_label).astype(np.int32).tolist()
all_score.extend(score)
all_labels.extend(y_true)
y_score = np.asarray(all_score)
y_true = np.asarray(all_labels)
eer, eer_threshold = compute_eer(y_true, y_score)
print(f'【EER】 threshold: {eer_threshold:.5f},EER: {eer:.5f}')
if __name__ == '__main__':
main()