-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmid1_binary.Rmd
94 lines (86 loc) · 2.24 KB
/
mid1_binary.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
title: "626 mid1"
author: "yifei dai"
date: '2023-03-21'
output: html_document
---
```{r setup}
library(dplyr)
library(tidyverse)
library(tidytext)
library(rpart)
library(ipred)
library(e1071)
```
```{r}
# Read in data
dt <- read.table("data/training_data.txt", header = T)
test_data <- read.table("data/test_data.txt", header = T)
head(dt)
```
# task 1: binary classifier
```{r}
# dt$activity[!duplicated(dt$activity)]
# Data processing
dt_1 <- dt %>%
dplyr::select(-subject) %>%
dplyr::mutate_at(dt$activity, as.numeric) %>%
dplyr::mutate(bi_activity = ifelse(activity <= 3, 1, 0)) %>% # dynamic == 1, static & transition posture == 0
dplyr::select(-activity)
test_data_1 <- test_data %>%
dplyr::select(-subject)
```
```{r}
set.seed(123)
train_id_1 <- sample(1:nrow(dt_1), 0.9*nrow(dt_1))
train_1 <- dt_1[train_id_1, ]
test_1 <- dt_1[-train_id_1, ]
y_tr <- test_1$bi_activity
test_1 %>% dplyr::select(-bi_activity)
train_1$b
```
```{r}
svm_linear <- svm(as.factor(bi_activity)~.,
data = train_1,
kernel = "linear",
decision.values = TRUE)
svm_linear
y_pred <- predict(svm_linear, test_1)
cm <- table(y_tr, y_pred)
cm
roc_svm_line <- roc(y_tr, as.numeric(y_pred),
smooth = F,
levels = c(0,1),
direction='<')
plot(roc_svm_line , main ="ROC curve -- SVM with linear kernel")
```
```{r}
dr <- train_1 %>% dplyr::select(-bi_activity)
rm <- randomForest(x = dr,
y = train_1$bi_activity,
ntree = 500)
y_pred_rm <- predict(rm, test_1)
cm <- table(y_tr, y_pred_rm)
cm
roc_svm_line <- roc(y_tr, as.numeric(y_pred_rm),
smooth = F,
levels = c(0,1),
direction='<')
plot(roc_svm_line , main ="ROC curve -- randomforest")
```
```{r}
#model comparison
compare_matrix <- table(y_pred, y_pred_rm)
compare_matrix
```
```{r}
# prediction_1
y_pred_upload <- predict(svm_linear, test_data_1)
# write in
submit <- file("D:/1_ADesk/Learning/first winter semester/626/mid1/binary_2778.txt", "w" )
writeLines(as.character(y_pred_upload), submit)
close(submit)
```
```{r}
sessioninfo::session_info()
```