-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathdata_utils.py
338 lines (301 loc) · 9.96 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# encoding = utf8
import re
import math
import codecs
import random
import numpy as np
import jieba
jieba.initialize()
# 对jieb添加自定义的词典,词典由训练集产生
print("load custom dictionary...")
file_userdict = 'dict_vocab_unlabel.txt' # 此处文件名为用户自定义的文件名,内容为不想被分开的词
jieba.load_userdict(file_userdict)
f = open(file_userdict, 'r', encoding='utf-8')
for line in f.readlines():
jieba.suggest_freq(line.strip())
# line = "湖南省长沙市岳麓区麓山南路605号中南大学南校区天马学生公寓宿舍A区天马四组25栋"
# result = jieba.cut(line)
def create_dico(item_list):
"""
Create a dictionary of items from a list of list of items.
"""
assert type(item_list) is list
dico = {}
for items in item_list:
for item in items:
if item not in dico:
dico[item] = 1
else:
dico[item] += 1
return dico
def create_mapping(dico):
"""
Create a mapping (item to ID / ID to item) from a dictionary.
Items are ordered by decreasing frequency.
"""
sorted_items = sorted(dico.items(), key=lambda x: (-x[1], x[0]))
id_to_item = {i: v[0] for i, v in enumerate(sorted_items)}
item_to_id = {v: k for k, v in id_to_item.items()}
return item_to_id, id_to_item
def zero_digits(s):
"""
Replace every digit in a string by a zero.
"""
return re.sub('\d', '0', s)
def iob2(tags):
"""
Check that tags have a valid IOB format.
Tags in IOB1 format are converted to IOB2.
"""
for i, tag in enumerate(tags):
if tag == 'O': #合法
continue
split = tag.split('-')
if len(split) != 2 or split[0] not in ['I', 'B']: #不合法
return False
if split[0] == 'B':
continue
elif i == 0 or tags[i - 1] == 'O': # conversion IOB1 to IOB2,具体怎么转换,两者区别是什么???
tags[i] = 'B' + tag[1:] #tag[1:]应该是除了字外的标记部分
elif tags[i - 1][1:] == tag[1:]: #???
continue
else: # conversion IOB1 to IOB2
tags[i] = 'B' + tag[1:]
return True
def iob_iobes(tags):
"""
IOB -> IOBES
"""
new_tags = []
for i, tag in enumerate(tags):
if tag == 'O':
new_tags.append(tag)
elif tag.split('-')[0] == 'B':
if i + 1 != len(tags) and \
tags[i + 1].split('-')[0] == 'I':
new_tags.append(tag)
else:
new_tags.append(tag.replace('B-', 'S-'))
elif tag.split('-')[0] == 'I':
if i + 1 < len(tags) and \
tags[i + 1].split('-')[0] == 'I':
new_tags.append(tag)
else:
new_tags.append(tag.replace('I-', 'E-'))
else:
raise Exception('Invalid IOB format!')
return new_tags
def iobes_iob(tags):
"""
IOBES -> IOB
"""
new_tags = []
for i, tag in enumerate(tags):
if tag.split('-')[0] == 'B':
new_tags.append(tag)
elif tag.split('-')[0] == 'I':
new_tags.append(tag)
elif tag.split('-')[0] == 'S':
new_tags.append(tag.replace('S-', 'B-'))
elif tag.split('-')[0] == 'E':
new_tags.append(tag.replace('E-', 'I-'))
elif tag.split('-')[0] == 'O':
new_tags.append(tag)
else:
raise Exception('Invalid format!')
return new_tags
def insert_singletons(words, singletons, p=0.5):
"""
Replace singletons by the unknown word with a probability p.
"""
new_words = []
for word in words:
if word in singletons and np.random.uniform() < p:
new_words.append(0)
else:
new_words.append(word)
return new_words
def get_seg_features(string): #根据词的长度,标记为0、1 2、1 2 3、1 2 2 3等
"""
Segment text with jieba
features are represented in bies format
s donates single word
"""
seg_feature = []
for word in jieba.cut(string):
if len(word) == 1:
seg_feature.append(0)
else:
tmp = [2] * len(word)
tmp[0] = 1
tmp[-1] = 3
seg_feature.extend(tmp)
return seg_feature
def create_input(data):
"""
Take sentence data and return an input for
the training or the evaluation function.
"""
inputs = list()
inputs.append(data['chars'])
inputs.append(data["segs"])
inputs.append(data['tags'])
return inputs
def load_word2vec(emb_path, id_to_word, word_dim, old_weights): # 要改!!!
"""
Load word embedding from pre-trained file
embedding size must match
"""
#把字典中所有的字转化为向量,假设字在字向量文件中,那就用字向量文件中的值初始化向量,
new_weights = old_weights # old_weights指的是什么???
print('Loading pretrained embeddings from {}...'.format(emb_path))
pre_trained = {}
emb_invalid = 0 #保存无效行的数量
for i, line in enumerate(codecs.open(emb_path, 'r', 'utf-8')):
line = line.rstrip().split()
if len(line) == word_dim + 1:
pre_trained[line[0]] = np.array(
[float(x) for x in line[1:]]
).astype(np.float32)
else:
emb_invalid += 1
if emb_invalid > 0:
print('WARNING: %i invalid lines' % emb_invalid)
c_found = 0
c_lower = 0
c_zeros = 0
n_words = len(id_to_word)
# Lookup table initialization
for i in range(n_words):
word = id_to_word[i]
if word in pre_trained:
new_weights[i] = pre_trained[word]
c_found += 1
elif word.lower() in pre_trained:
new_weights[i] = pre_trained[word.lower()]
c_lower += 1
elif re.sub('\d', '0', word.lower()) in pre_trained:
new_weights[i] = pre_trained[
re.sub('\d', '0', word.lower())
]
c_zeros += 1
print('Loaded %i pretrained embeddings.' % len(pre_trained))
print('%i / %i (%.4f%%) words have been initialized with '
'pretrained embeddings.' % (
c_found + c_lower + c_zeros, n_words,
100. * (c_found + c_lower + c_zeros) / n_words)
)
print('%i found directly, %i after lowercasing, '
'%i after lowercasing + zero.' % (
c_found, c_lower, c_zeros
))
return new_weights
def full_to_half(s):
"""
Convert full-width character to half-width one
"""
n = []
for char in s:
num = ord(char)
if num == 0x3000:
num = 32
elif 0xFF01 <= num <= 0xFF5E:
num -= 0xfee0
char = chr(num)
n.append(char)
return ''.join(n)
def cut_to_sentence(text):
"""
Cut text to sentences
"""
sentence = []
sentences = []
len_p = len(text)
pre_cut = False
for idx, word in enumerate(text):
sentence.append(word)
cut = False
if pre_cut:
cut=True
pre_cut=False
if word in u"!?\n":
cut = True
if len_p > idx+1:
if text[idx+1] in ".\"\'?!":
cut = False
pre_cut=True
if cut:
sentences.append(sentence)
sentence = []
if sentence:
sentences.append("".join(list(sentence)))
return sentences
def replace_html(s):
s = s.replace('"','"')
s = s.replace('&','&')
s = s.replace('<','<')
s = s.replace('>','>')
s = s.replace(' ',' ')
s = s.replace("“", "")
s = s.replace("”", "")
s = s.replace("—","")
s = s.replace("\xa0", " ")
return(s)
def input_from_line(line, char_to_id):
"""
Take sentence data and return an input for
the training or the evaluation function.
"""
line = full_to_half(line)
line = replace_html(line)
inputs = list()
inputs.append([line])
line.replace(" ", "$")
inputs.append([[char_to_id[char] if char in char_to_id else char_to_id["<UNK>"]
for char in line]])
inputs.append([get_seg_features(line)])
inputs.append([[]])
return inputs
class BatchManager(object):
'''
将训练数据划分为batch形式,并创建batch的迭代器
'''
def __init__(self, data, batch_size):
'''
:param data: 传入的data的形式是:字符、字符id、根据词的长度,标记为0、1 2、1 2 3、1 2 2 3等、tag的id
:param batch_size:
'''
self.batch_data = self.sort_and_pad(data, batch_size)
self.len_data = len(self.batch_data) # batch数目
def sort_and_pad(self, data, batch_size):
num_batch = int(math.ceil(len(data) /batch_size)) # ceil() 函数返回数字的上入整数
sorted_data = sorted(data, key=lambda x: len(x[0])) # 排序目的是什么???
batch_data = list()
for i in range(num_batch):
batch_data.append(self.pad_data(sorted_data[i*int(batch_size) : (i+1)*int(batch_size)]))
return batch_data
@staticmethod
def pad_data(data):
'''
根据样本的最大的长度填充其他样本
:param data:
:return:
'''
strings = []
chars = []
segs = []
targets = []
max_length = max([len(sentence[0]) for sentence in data]) #字符的最大长度
for line in data:
string, char, seg, target = line
padding = [0] * (max_length - len(string)) #根据最大长度填充0
strings.append(string + padding)
chars.append(char + padding)
segs.append(seg + padding)
targets.append(target + padding)
return [strings, chars, segs, targets]
def iter_batch(self, shuffle=False): # 应该是返回batch迭代器
if shuffle:
random.shuffle(self.batch_data)
for idx in range(self.len_data):
yield self.batch_data[idx]