-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhw5_VineethRavi.py
405 lines (302 loc) · 15.9 KB
/
hw5_VineethRavi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import numpy as np
import cv2 as cv
import math
from scipy import optimize
"""
Importing the neccessary Libraries required for HW5
"""
# The function below is used for drawing lines, between points.
# The line is drawn between the two images, where corresponding points are matched.
def draw_lines(image1,sift_pts1,image2,sift_pts2):
s1=np.shape(image1)
s2=np.shape(image2)
# Combining Both the images, to be placed adjacent to each other
Siftimage=np.zeros((s1[0],s1[1]+s2[1],3))
Siftimage[:,0:s1[1]]=image1
Siftimage[:,s1[1]:s1[1]+s2[1]]=image2
# Drawing Lines for SIFT points matched
for i in range(0,len(sift_pts1)):
cv.line(Siftimage,(int(sift_pts1[i][1]),int(sift_pts1[i][0])),(s1[1]+int(sift_pts2[i][1]),int(sift_pts2[i][0])),(0,0,255),thickness=2)
return Siftimage
# Matching the corresponding interest points, between the two images
def match_sift(image1,Sift_Corners1,des1,image2,Sift_Corners2,des2):
l1=len(Sift_Corners1)
l2=len(Sift_Corners2)
euclidian=np.zeros((l1,l2)) # Similarity metric for feature vectors
for i in range(0,l1):
for j in range(0,l2): # Normalizing Lengths to make it invariant to change in illumniation
euclidian[i][j]=np.linalg.norm(des1[i]/np.linalg.norm(des1[i])-des2[j]/np.linalg.norm(des2[j]))
# Computing the Euclidean distance between the 128 bit feature vectors
sift_threshold=np.min(euclidian)*(10)
sift_pts1=[]
sift_pts2=[]
array_pts2=[]
# Finding similar interest points and mapping them with each other
for i in range(0,len(euclidian)):
val=np.min(euclidian[i]) # Computing the minimum value in each row
idx=np.argmin(euclidian[i])
if((val<=sift_threshold)and(idx not in array_pts2)):
array_pts2.append(idx)
sift_pts1.append([Sift_Corners1[i][0],Sift_Corners1[i][1]])
sift_pts2.append([Sift_Corners2[idx][0],Sift_Corners2[idx][1]])
# Adding similar and corresponding interest points to the list
return sift_pts1,sift_pts2
"""
Implementing the SIFT Algorithm from CV library
This is used to find the interest points in the images
"""
def SIFT(image1clr,image2clr):
"""
Converting to Gray-Scale values to perfrom the SIFT operator, to find interest points
"""
image1=cv.cvtColor(image1clr,cv.COLOR_RGB2GRAY)
image2=cv.cvtColor(image2clr,cv.COLOR_RGB2GRAY)
sift = cv.xfeatures2d.SIFT_create()
# Finding the interest points and the descriptor vectors for every interest point in the image
kp1,des1 = sift.detectAndCompute(image1,None)
kp2,des2 = sift.detectAndCompute(image2,None)
Sift_1=[]
Sift_2=[]
# Extracting the interest points for both images
for i in kp1:
Sift_1.append([i.pt[1],i.pt[0]])
for i in kp2:
Sift_2.append([i.pt[1],i.pt[0]])
print('d1',len(des1))
print('d2',len(des2))
# Finding the similarity metric and mapping similar interest points
sift_pts1,sift_pts2=match_sift(image1,Sift_1,des1,image2,Sift_2,des2)
# Drawing Lines between the corresponding interest points in the image
Siftimage=draw_lines(image1clr,sift_pts1,image2clr,sift_pts2)
cv.imwrite('SIFTimage.jpg',Siftimage)
# Writing the Output corresponding interest points in both images, with lines drawn
return sift_pts1,sift_pts2
"""
Estimating Homography using Linear Least Squares Algorithm
"""
def HomographyMatrix(points1,points2):
ta=[]
H = np.zeros((3,3))
for i in range(0,len(points1)):
tmp=[points1[i][0],points1[i][1],1,0,0,0,-points2[i][0]*points1[i][0],-points2[i][0]*points1[i][1],-points2[i][0]]
ta.append(tmp)
tmp=[0,0,0,points1[i][0],points1[i][1],1,-points2[i][1]*points1[i][0],-points2[i][1]*points1[i][1],-points2[i][1]]
ta.append(tmp)
A=np.asarray(ta) # Computing the A matrix, which is used to find the Homography
u,s,vh=np.linalg.svd(A) # Linear Least Squares Estimate
h=np.transpose(vh[-1]) # Initial guess or solution obtained by using the Linear Least Squares Algorithm
H[0][0] = h[0]
H[0][1] = h[1]
H[0][2] = h[2]
H[1][0] = h[3]
H[1][1] = h[4]
H[1][2] = h[5]
H[2][0] = h[6]
H[2][1] = h[7]
H[2][2] = h[8]
return A,h,H # Returning the values
"""
Implementing the RANSAC Algorithm
"""
def RANSAC(image1clr,image2clr,sift_pts1,sift_pts2):
sift_pts1=np.asarray(sift_pts1).astype('float')
sift_pts2=np.asarray(sift_pts2).astype('float')
p=0.99 # The probability that at least one of the N trials will be free of outliers in the calculation of H
n=6 # The number of correspondences chosen each trial to compute the Homography
epsilon=0.70 # The Probability that a correspondence is an outlier
delta=30 # The threshold for the inlier set
n_total=len(sift_pts1) # The total number of points available for choosing n correspondences
M = int(np.ceil(n_total*(1.0-epsilon))) # Minimum value for the size of the inlier set, for it to be acceptable
N = int(np.ceil(np.log(1.0-p)/(np.log(1.0-((1.0-epsilon)**n))))) # The total number of Trials
print('N',N)
print('M',M)
inliers_pts=[] # Finding the corresponding inlier points in a given trial
outliers_pts=[] # Finding the corresponding outlier points in a given trial
count_inliers=[] # Count for the Number of inliers / Support in each trial
for k in range(0,N):
c = np.random.choice(n_total, n) # Randomly choose n correspondences from the interest points vectors
A,h,H=HomographyMatrix(sift_pts1[c],sift_pts2[c]) # Compute the Homography matrix for these correspondences
inliers_pts.append([])
outliers_pts.append([])
count=0
for i in range(0,n_total):
new_pt2=np.matmul(H,[sift_pts1[i][0],sift_pts1[i][1],1.0]) # Using Homography to compute x' mapping in image
new_pt2=new_pt2/new_pt2[2]
if(np.linalg.norm(sift_pts2[i]-new_pt2[0:2])<=delta): # Verifying if the error is minimal in computing x'
inliers_pts[k].append([sift_pts1[i],sift_pts2[i] ]) # Appending list of inliers correspondences
count=count+1 # Increasing Count
else:
outliers_pts[k].append([sift_pts1[i],sift_pts2[i] ]) # Appending list of inliers correspondences
count_inliers.append(count) # The Support for each pair of inliers set
val=np.argmax(count_inliers) # Finding the Maximum number of inliers set support
print('val',val)
# Verifying if the number of inliers is > M, for the inliers set to be accepted
if(val>=M):
print("The size of the inlier set is acceptable")
else:
print("The size of the inlier set is NOT acceptable")
max_inliers_pts = inliers_pts[val] # Best inliers correspondences set with highest support
min_outliers_pts = outliers_pts[val]
max_inliers_pts=np.asarray(max_inliers_pts)
min_outliers_pts=np.asarray(min_outliers_pts)
final_inlier_points1 = max_inliers_pts[:,0] # Inliers in image 1
final_inlier_points2 = max_inliers_pts[:,1] # Inliers in image 2
final_outlier_points1 = min_outliers_pts[:,0] # Outliers in image 1
final_outlier_points2 = min_outliers_pts[:,1] # Outliers in image 2
inliers_image=draw_lines(image1clr,final_inlier_points1,image2clr,final_inlier_points2)
cv.imwrite('inliers_image.jpg',inliers_image)
outliers_image=draw_lines(image1clr,final_outlier_points1,image2clr,final_outlier_points2)
cv.imwrite('outliers_image.jpg',outliers_image)
"""
Linear Least Squares for obtaining Homography
"""
# Computing Initial guess of Homography to be used in LM Algorithm
A,h,H=HomographyMatrix(final_inlier_points1,final_inlier_points2) # This is used as input in Non-Linear least squares
return A,h,H
"""
Implementing the Levenberg-Marquardt Algorithm (using non-linear least squares)
"""
def fun(x):
val=np.matmul(B,x) # Function for which we are finding solution using the LM Algorithm
if(np.linalg.norm(x)< 1e-50 ): # To prevent, trivial solution (all zeros), from being approached by Gradient Descent
return np.ones(len(B))*5000 # Steer solution to non trivial minima, where Ah=0
return val
def LM(A,h):
H=np.zeros((3,3))
global B
B=A
sol=optimize.root(fun,h,method='lm') # Using scipy.optimize for implementing the LM algorithm
H[0][0] = sol.x[0]
H[0][1] = sol.x[1]
H[0][2] = sol.x[2]
H[1][0] = sol.x[3]
H[1][1] = sol.x[4]
H[1][2] = sol.x[5]
H[2][0] = sol.x[6]
H[2][1] = sol.x[7]
H[2][2] = sol.x[8] # Refining the initial homography guess to OBTAIN THE FINAL Homography
return H # The refined Homography
def WeightedAverageRGBPixelValue(pt, img): # Interpolation of Pixel value using pixel values from adjacent neighbours
y1=int(math.floor(pt[0])) # Used in Weighted Average Pixel Computation
y2=int(math.ceil(pt[0]))
x1=int(math.floor(pt[1]))
x2=int(math.ceil(pt[1]))
Wp=1/np.linalg.norm(np.array([pt[0]-x1,pt[1]-y1])) # Weights for adjacent pixels
Wq=1/np.linalg.norm(np.array([pt[0]-x1,pt[1]-y2]))
Wr=1/np.linalg.norm(np.array([pt[0]-x2,pt[1]-y1]))
Ws=1/np.linalg.norm(np.array([pt[0]-x2,pt[1]-y2]))
# Computing the average pixel value using euclidian metric
pixel_value = (Wp*img[y1][x1] + Wq*img[y2][x1] + Wr*img[y1][x2] + Ws*img[y2][x2])/(Wp+Wq+Wr+Ws)
return pixel_value # Return Pixel Value
"""
Computing Corners which are used in computing the Resultant stitched Mosaic / Panaroma
"""
def ComputeCorners(image,H):
a=np.matmul(H,[0.0,0.0,1.0])
b=np.matmul(H,[np.shape(image)[0],0.0,1.0])
c=np.matmul(H,[np.shape(image)[0],np.shape(image)[1],1.0])
d=np.matmul(H,[0.0,np.shape(image)[1],1.0])
a=a/a[2] # The 4 corners in the bounding box, in clockwise order is given here
b=b/b[2]
c=c/c[2]
d=d/d[2]
return a,b,c,d
"""
Stitching the Images together, to form the Panaroma
"""
def StitchMosaic(image1,image2,image3,image4,image5,H13,H23,H43,H53):
a1,b1,c1,d1=ComputeCorners(image1,H13) # Computing the Corners
a2,b2,c2,d2=ComputeCorners(image2,H23)
a3,b3,c3,d3=ComputeCorners(image3,np.eye(3))
a4,b4,c4,d4=ComputeCorners(image4,H43)
a5,b5,c5,d5=ComputeCorners(image5,H53)
# Similar to HW3 , for computing the Projections between two images with corresponding points
array=[a1[0],b1[0],c1[0],d1[0],a2[0],b2[0],c2[0],d2[0],a3[0],b3[0],c3[0],d3[0],a4[0],b4[0],c4[0],d4[0],a5[0],b5[0],c5[0],d5[0]]
xmin=np.min(array)
xmax=np.max(array)
array=[a1[1],b1[1],c1[1],d1[1],a2[1],b2[1],c2[1],d2[1],a3[1],b3[1],c3[1],d3[1],a4[1],b4[1],c4[1],d4[1],a5[1],b5[1],c5[1],d5[1]]
ymin=np.min(array)
ymax=np.max(array)
xlen=int(round(xmax-xmin)) # Final Dimensions of the image of the output panaroma
ylen=int(round(ymax-ymin))
final=np.zeros((xlen,ylen,3))
print(xlen,ylen)
H13=np.linalg.pinv(H13) # Computing inverses, similar reasoning as in HW3
H23=np.linalg.pinv(H23)
H43=np.linalg.pinv(H43)
H53=np.linalg.pinv(H53)
"""
Stitching the Images together, by projecting images, 2,4,1,5 on image 3. This is done using Weighted Average Pixel Calculation or Bilinear interpolation
Similar to the procedure and reasoning given in HW3
"""
for i in range(0,np.shape(final)[0]):
for j in range(0,np.shape(final)[1]):
if((i+xmin)>=0 and (i+xmin)<np.shape(image3)[0] and (j+ymin)>=0 and (j+ymin)<np.shape(image3)[1]):
final[i,j]=image3[int(i+xmin),int(j+ymin)]
else:
tmp=np.array([i+xmin,j+ymin,1.0])
xp=np.array(np.dot(H23,tmp)) # Fitting the Image to World
xp=xp/xp[2]
if((xp[0]>0)and(xp[0]<np.shape(image2)[0]-1)and(xp[1]>0)and(xp[1]<np.shape(image2)[1]-1)):
final[i,j]=WeightedAverageRGBPixelValue(xp,image2)
else:
tmp=np.array([i+xmin,j+ymin,1.0])
xp=np.array(np.dot(H43,tmp)) # Fitting the Image to World
xp=xp/xp[2]
if((xp[0]>0)and(xp[0]<np.shape(image4)[0]-1)and(xp[1]>0)and(xp[1]<np.shape(image4)[1]-1)):
final[i,j]=WeightedAverageRGBPixelValue(xp,image4)
else:
tmp=np.array([i+xmin,j+ymin,1.0])
xp=np.array(np.dot(H13,tmp)) # Fitting the Image to World
xp=xp/xp[2]
if((xp[0]>0)and(xp[0]<np.shape(image1)[0]-1)and(xp[1]>0)and(xp[1]<np.shape(image1)[1]-1)):
final[i,j]=WeightedAverageRGBPixelValue(xp,image1)
else:
tmp=np.array([i+xmin,j+ymin,1.0])
xp=np.array(np.dot(H53,tmp)) # Fitting the Image to World
xp=xp/xp[2]
if((xp[0]>0)and(xp[0]<np.shape(image5)[0]-1)and(xp[1]>0)and(xp[1]<np.shape(image5)[1]-1)):
final[i,j]=WeightedAverageRGBPixelValue(xp,image5)
return final # Final Output Panaroma
"""
MAIN FUNCTION BEGINS HERE
"""
# Reading the images for performing image mosaicing
image1clr=cv.imread("1.jpg")
image2clr=cv.imread("2.jpg")
image3clr=cv.imread("3.jpg")
image4clr=cv.imread("4.jpg")
image5clr=cv.imread("5.jpg")
"""
Resizing the images for faster computation
"""
resize=0.3
image1clr=cv.resize(image1clr, (0,0), fx=resize, fy=resize)
image2clr=cv.resize(image2clr, (0,0), fx=resize, fy=resize)
image3clr=cv.resize(image3clr, (0,0), fx=resize, fy=resize)
image4clr=cv.resize(image4clr, (0,0), fx=resize, fy=resize)
image5clr=cv.resize(image5clr, (0,0), fx=resize, fy=resize)
"""
Finding Interest Points for two consecutive pairs of images using SIFT
We use RANSAC, to eliminate outliers and find the inital solution guess using Linear Least squares to get the Homography Matrix
We refine the guess using Levenberg-Marquardt algorithm (Non-linear least squares) to obtain the final Homography
"""
sift_pts1,sift_pts2=SIFT(image1clr,image2clr)
A,h,H12=RANSAC(image1clr,image2clr,sift_pts1,sift_pts2)
H12=LM(A,h) # Homography from 1 to 2
sift_pts1,sift_pts2=SIFT(image2clr,image3clr)
A,h,H23=RANSAC(image2clr,image3clr,sift_pts1,sift_pts2)
H23=LM(A,h) # Homography from 2 to 3
H13=np.matmul(H23,H12) # Homography from 1 to 3
sift_pts1,sift_pts2=SIFT(image4clr,image3clr)
A,h,H43=RANSAC(image4clr,image3clr,sift_pts1,sift_pts2)
H43=LM(A,h) # Homography from 4 to 3
sift_pts1,sift_pts2=SIFT(image5clr,image4clr)
A,h,H54=RANSAC(image5clr,image4clr,sift_pts1,sift_pts2)
H54=LM(A,h) # Homography from 5 to 4
H53=np.matmul(H43,H54) # Homography from 5 to 3
"""
We now stitch the images together using the Final Refined Homographies obtained to get the Panaroma
"""
panaroma=StitchMosaic(image1clr,image2clr,image3clr,image4clr,image5clr,H13,H23,H43,H53)
cv.imwrite('Panaroma.jpg',panaroma)