-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathunwrap_utils.py
167 lines (132 loc) · 7 KB
/
unwrap_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import numpy as np
import torch
import cv2
import torch.optim as optim
import imageio
from PIL import Image
def compute_consistency(flow12, flow21):
wflow21 = warp_flow(flow21, flow12)
diff = flow12 + wflow21
diff = (diff[:, :, 0] ** 2 + diff[:, :, 1] ** 2) ** .5
return diff
def warp_flow(img, flow):
h, w = flow.shape[:2]
flow = flow.copy()
flow[:, :, 0] += np.arange(w)
flow[:, :, 1] += np.arange(h)[:, np.newaxis]
res = cv2.remap(img, flow, None, cv2.INTER_LINEAR)
return res
def get_consistency_mask(optical_flow, optical_flow_reverse):
mask_flow = compute_consistency(optical_flow.numpy(), optical_flow_reverse.numpy()) < 1.0
mask_flow_reverse = compute_consistency(optical_flow_reverse.numpy(),
optical_flow.numpy()) < 1.0
return torch.from_numpy(mask_flow), torch.from_numpy(mask_flow_reverse)
def resize_flow(flow, newh, neww):
oldh, oldw = flow.shape[0:2]
flow = cv2.resize(flow, (neww, newh), interpolation=cv2.INTER_LINEAR)
flow[:, :, 0] *= newh / oldh
flow[:, :, 1] *= neww / oldw
return flow
def load_input_data(resy, resx, maximum_number_of_frames, data_folder, use_mask_rcnn_bootstrapping, filter_optical_flow,
vid_root, vid_name):
out_flow_dir = vid_root / f'{vid_name}_flow'
maskrcnn_dir = vid_root / f'{vid_name}_maskrcnn'
input_files = sorted(list(data_folder.glob('*.jpg')) + list(data_folder.glob('*.png')))
number_of_frames=np.minimum(maximum_number_of_frames,len(input_files))
video_frames = torch.zeros((resy, resx, 3, number_of_frames))
video_frames_dx = torch.zeros((resy, resx, 3, number_of_frames))
video_frames_dy = torch.zeros((resy, resx, 3, number_of_frames))
mask_frames = torch.zeros((resy, resx, number_of_frames))
optical_flows = torch.zeros((resy, resx, 2, number_of_frames, 1))
optical_flows_mask = torch.zeros((resy, resx, number_of_frames, 1))
optical_flows_reverse = torch.zeros((resy, resx, 2, number_of_frames, 1))
optical_flows_reverse_mask = torch.zeros((resy, resx, number_of_frames, 1))
mask_files = sorted(list(maskrcnn_dir.glob('*.jpg')) + list(maskrcnn_dir.glob('*.png')))
for i in range(number_of_frames):
file1 = input_files[i]
im = np.array(Image.open(str(file1))).astype(np.float64) / 255.
if use_mask_rcnn_bootstrapping:
mask = np.array(Image.open(str(mask_files[i]))).astype(np.float64) / 255.
mask = cv2.resize(mask, (resx, resy), cv2.INTER_NEAREST)
mask_frames[:, :, i] = torch.from_numpy(mask)
video_frames[:, :, :, i] = torch.from_numpy(cv2.resize(im[:, :, :3], (resx, resy)))
video_frames_dy[:-1, :, :, i] = video_frames[1:, :, :, i] - video_frames[:-1, :, :, i]
video_frames_dx[:, :-1, :, i] = video_frames[:, 1:, :, i] - video_frames[:, :-1, :, i]
for i in range(number_of_frames - 1):
file1 = input_files[i]
j = i + 1
file2 = input_files[j]
fn1 = file1.name
fn2 = file2.name
flow12_fn = out_flow_dir / f'{fn1}_{fn2}.npy'
flow21_fn = out_flow_dir / f'{fn2}_{fn1}.npy'
flow12 = np.load(flow12_fn)
flow21 = np.load(flow21_fn)
if flow12.shape[0] != resy or flow12.shape[1] != resx:
flow12 = resize_flow(flow12, newh=resy, neww=resx)
flow21 = resize_flow(flow21, newh=resy, neww=resx)
mask_flow = compute_consistency(flow12, flow21) < 1.0
mask_flow_reverse = compute_consistency(flow21, flow12) < 1.0
optical_flows[:, :, :, i, 0] = torch.from_numpy(flow12)
optical_flows_reverse[:, :, :, j, 0] = torch.from_numpy(flow21)
if filter_optical_flow:
optical_flows_mask[:, :, i, 0] = torch.from_numpy(mask_flow)
optical_flows_reverse_mask[:, :, j, 0] = torch.from_numpy(mask_flow_reverse)
else:
optical_flows_mask[:, :, i, 0] = torch.ones_like(mask_flow)
optical_flows_reverse_mask[:, :, j, 0] = torch.ones_like(mask_flow_reverse)
return optical_flows_mask, video_frames, optical_flows_reverse_mask, mask_frames, video_frames_dx, video_frames_dy, optical_flows_reverse, optical_flows
def get_tuples(number_of_frames, video_frames):
# video_frames shape: (resy, resx, 3, num_frames), mask_frames shape: (resy, resx, num_frames)
jif_all = []
for f in range(number_of_frames):
mask = (video_frames[:, :, :, f] > -1).any(dim=2)
relis, reljs = torch.where(mask > 0.5)
jif_all.append(torch.stack((reljs, relis, f * torch.ones_like(reljs))))
return torch.cat(jif_all, dim=1)
# See explanation in the paper, appendix A (Second paragraph)
def pre_train_mapping(model_F_mapping, frames_num, uv_mapping_scale, resx, resy, larger_dim, device,
pretrain_iters=100):
optimizer_mapping = optim.Adam(model_F_mapping.parameters(), lr=0.0001)
for i in range(pretrain_iters):
for f in range(frames_num):
i_s_int = torch.randint(resy, (np.int64(10000), 1))
j_s_int = torch.randint(resx, (np.int64(10000), 1))
i_s = i_s_int / (larger_dim / 2) - 1
j_s = j_s_int / (larger_dim / 2) - 1
xyt = torch.cat((j_s, i_s, (f / (frames_num / 2.0) - 1) * torch.ones_like(i_s)),
dim=1).to(device)
uv_temp = model_F_mapping(xyt)
model_F_mapping.zero_grad()
loss = (xyt[:, :2] * uv_mapping_scale - uv_temp).norm(dim=1).mean()
print(f"pre-train loss: {loss.item()}")
loss.backward()
optimizer_mapping.step()
return model_F_mapping
def save_mask_flow(optical_flows_mask, video_frames, results_folder):
for j in range(optical_flows_mask.shape[3]):
filter_flow_0 = imageio.get_writer(
"%s/filter_flow_%d.mp4" % (results_folder, j), fps=10)
for i in range(video_frames.shape[3]):
if torch.where(optical_flows_mask[:, :, i, j] == 1)[0].shape[0] == 0:
continue
cur_frame = video_frames[:, :, :, i].clone()
# Put red color where mask=0.
cur_frame[
torch.where(optical_flows_mask[:, :, i, j] == 0)[0], torch.where(optical_flows_mask[:, :, i, j] == 0)[
1], 0] = 1
cur_frame[
torch.where(optical_flows_mask[:, :, i, j] == 0)[0], torch.where(optical_flows_mask[:, :, i, j] == 0)[
1], 1] = 0
cur_frame[
torch.where(optical_flows_mask[:, :, i, j] == 0)[0], torch.where(optical_flows_mask[:, :, i, j] == 0)[
1], 2] = 0
filter_flow_0.append_data((cur_frame.numpy() * 255).astype(np.uint8))
filter_flow_0.close()
# save the video in the working resolution
input_video = imageio.get_writer(
"%s/input_video.mp4" % (results_folder), fps=10)
for i in range(video_frames.shape[3]):
cur_frame = video_frames[:, :, :, i].clone()
input_video.append_data((cur_frame.numpy() * 255).astype(np.uint8))
input_video.close()