-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
152 lines (125 loc) · 5.65 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import pickle
import random
import argparse
import numpy as np
import torch
from transformers import AutoModel, AutoProcessor
from transformers import AdamW
from model import *
from dataset import *
from trainer import Trainer
from torch.utils.data import DataLoader
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--dataset', type=str, default='data_bundle_new.pkl')
parser.add_argument('--ptm', type=str, default='clip', choices = ['align', 'clip', 'blip'])
parser.add_argument('--ptm_lr', type=float, default=1e-5)
parser.add_argument('--model_lr', type=float, default=5e-4)
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--epoch', type=int, default=100)
parser.add_argument('--weight_decay', type=float, default=1e-7)
parser.add_argument('--load_path', type=str, default=None)
parser.add_argument('--load_epoch', type=int, default=0)
parser.add_argument('--do_train', default=False, action = 'store_true')
parser.add_argument('--do_eval', default=False, action = 'store_true')
parser.add_argument('--wandb', default=False, action = 'store_true')
parser.add_argument('--gpu', type=str, default='0')
parser.add_argument('--save_path', type=str, default='./ckps/')
parser.add_argument('--con_loss', default=False, action = 'store_true')
parser.add_argument('--project', type=str)
parser.add_argument('--method', type=str, choices=['onlyent','CI','CI_EF'])
parser.add_argument('--con_type', type=str, choices = ['blc', 'all'])
parser.add_argument('--task', type=str, choices=['classification','ranking'], required=True)
parser.add_argument('--save_evidence', default=False, action = 'store_true')
parser.add_argument('--threshold', type=float)
arg = parser.parse_args()
if arg.task == "ranking" and arg.method not in ['onlyent', 'CI']:
parser.error("For ranking, you can only choose method from ['onlyent','CI']")
if arg.task == 'ranking':
identifier = 'ptm={}_bs={}_contype={}_conloss={}_method={}_task={}'.format(arg.ptm, arg.batch_size, arg.con_type, arg.con_loss, arg.method, arg.task)
elif arg.task == 'classification':
identifier = 'ptm={}_bs={}_contype={}_conloss={}_method={}_threshold={}_task={}'.format(arg.ptm, arg.batch_size, arg.con_type, arg.con_loss, arg.method, arg.threshold, arg.task)
random.seed(arg.seed)
np.random.seed(arg.seed)
torch.manual_seed(arg.seed)
device = torch.device("cuda:{}".format(arg.gpu) if torch.cuda.is_available() else "cpu")
# Load dataset
with open(f"resources/{arg.dataset}", 'rb') as f:
data_bundle = pickle.load(f)
hypers = data_bundle['hypers']
concepts = data_bundle['cons']
con2id = { c: i for i, c in enumerate(sorted(concepts))}
id2con = { i: c for i, c in enumerate(sorted(concepts))}
ptm_name = {
"clip": "openai/clip-vit-base-patch32",
"align": "kakaobrain/align-base",
"blip": "Salesforce/blip-image-captioning-base"
}
ptm_model = AutoModel.from_pretrained(ptm_name[arg.ptm])
processor = AutoProcessor.from_pretrained(ptm_name[arg.ptm])
model = MyModel(ptm_model, processor.tokenizer, n_con=len(concepts), device=device, con_type = arg.con_type,
id2con=id2con, model_name=arg.ptm, method = arg.method)
if arg.task=='classification':
train_data = MyDataset_classifi(data_bundle['trainset'],processor)
valid_data = MyDataset_classifi(data_bundle['validset'],processor)
test_data = MyDataset_classifi(data_bundle['testset'],processor)
elif arg.task=='ranking':
train_data = MyDataset_ranking(data_bundle['trainset'],processor)
valid_data = MyDataset_ranking(data_bundle['validset'],processor)
test_data = MyDataset_ranking(data_bundle['testset'],processor)
train_loader = DataLoader(dataset = train_data, batch_size=arg.batch_size, shuffle=True)
valid_loader = DataLoader(dataset = valid_data, batch_size=arg.batch_size * 2, shuffle=True)
test_loader = DataLoader(dataset = test_data, batch_size=arg.batch_size * 2, shuffle=True)
data_loaders = {
'train': train_loader,
'valid': valid_loader,
'test': test_loader,
'concepts': concepts,
'hypers': hypers,
'con2id': con2id,
'id2con': id2con
}
no_decay = ["bias", "LayerNorm.weight"]
param_group = [
{'lr': arg.model_lr, 'params': [p for n, p in model.named_parameters()
if ('encoder' not in n) and
(not any(nd in n for nd in no_decay))],
'weight_decay': arg.weight_decay},
{'lr': arg.model_lr, 'params': [p for n, p in model.named_parameters()
if ('encoder' not in n) and
(any(nd in n for nd in no_decay))],
'weight_decay': 0.0},
{'lr': arg.ptm_lr, 'params': [p for n, p in model.named_parameters()
if ('encoder' in n) and
(not any(nd in n for nd in no_decay)) ],
'weight_decay': arg.weight_decay},
{'lr': arg.ptm_lr, 'params': [p for n, p in model.named_parameters()
if ('encoder' in n) and
(any(nd in n for nd in no_decay))],
'weight_decay': 0.0},
]
optimizer = AdamW(param_group)
hyperparams = {
'batch_size': arg.batch_size,
'epoch': arg.epoch,
'identifier': identifier,
'load_path': arg.load_path,
'evaluate_every': 1,
'update_every': 1,
'load_epoch': arg.load_epoch,
'ptm': arg.ptm,
'do_train': arg.do_train,
'do_eval': arg.do_eval,
'wandb': arg.wandb,
'con_type': arg.con_type,
'con_loss': arg.con_loss,
'project': arg.project,
'method': arg.method,
'threshold': arg.threshold,
'task': arg.task,
'save_path': arg.save_path,
'save_evidence': arg.save_evidence
}
trainer = Trainer(data_loaders, model, optimizer, device, hyperparams)
trainer.run()