-
Notifications
You must be signed in to change notification settings - Fork 109
/
Copy pathtrainer.py
282 lines (235 loc) · 11.4 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# -*- coding: utf-8 -*-
import os
import os.path as osp
import sys
import time
from collections import defaultdict
import numpy as np
import torch
from torch import nn
from PIL import Image
from tqdm import tqdm
from losses import compute_d_loss, compute_g_loss
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
class Trainer(object):
def __init__(self,
args,
model=None,
model_ema=None,
optimizer=None,
scheduler=None,
config={},
device=torch.device("cpu"),
logger=logger,
train_dataloader=None,
val_dataloader=None,
initial_steps=0,
initial_epochs=0,
fp16_run=False
):
self.args = args
self.steps = initial_steps
self.epochs = initial_epochs
self.model = model
self.model_ema = model_ema
self.optimizer = optimizer
self.scheduler = scheduler
self.train_dataloader = train_dataloader
self.val_dataloader = val_dataloader
self.config = config
self.device = device
self.finish_train = False
self.logger = logger
self.fp16_run = fp16_run
def _train_epoch(self):
"""Train model one epoch."""
raise NotImplementedError
@torch.no_grad()
def _eval_epoch(self):
"""Evaluate model one epoch."""
pass
def save_checkpoint(self, checkpoint_path):
"""Save checkpoint.
Args:
checkpoint_path (str): Checkpoint path to be saved.
"""
state_dict = {
"optimizer": self.optimizer.state_dict(),
"steps": self.steps,
"epochs": self.epochs,
"model": {key: self.model[key].state_dict() for key in self.model}
}
if self.model_ema is not None:
state_dict['model_ema'] = {key: self.model_ema[key].state_dict() for key in self.model_ema}
if not os.path.exists(os.path.dirname(checkpoint_path)):
os.makedirs(os.path.dirname(checkpoint_path))
torch.save(state_dict, checkpoint_path)
def load_checkpoint(self, checkpoint_path, load_only_params=False):
"""Load checkpoint.
Args:
checkpoint_path (str): Checkpoint path to be loaded.
load_only_params (bool): Whether to load only model parameters.
"""
state_dict = torch.load(checkpoint_path, map_location="cpu")
for key in self.model:
self._load(state_dict["model"][key], self.model[key])
if self.model_ema is not None:
for key in self.model_ema:
self._load(state_dict["model_ema"][key], self.model_ema[key])
if not load_only_params:
self.steps = state_dict["steps"]
self.epochs = state_dict["epochs"]
self.optimizer.load_state_dict(state_dict["optimizer"])
def _load(self, states, model, force_load=True):
model_states = model.state_dict()
for key, val in states.items():
try:
if key not in model_states:
continue
if isinstance(val, nn.Parameter):
val = val.data
if val.shape != model_states[key].shape:
self.logger.info("%s does not have same shape" % key)
print(val.shape, model_states[key].shape)
if not force_load:
continue
min_shape = np.minimum(np.array(val.shape), np.array(model_states[key].shape))
slices = [slice(0, min_index) for min_index in min_shape]
model_states[key][slices].copy_(val[slices])
else:
model_states[key].copy_(val)
except:
self.logger.info("not exist :%s" % key)
print("not exist ", key)
@staticmethod
def get_gradient_norm(model):
total_norm = 0
for p in model.parameters():
param_norm = p.grad.data.norm(2)
total_norm += param_norm.item() ** 2
total_norm = np.sqrt(total_norm)
return total_norm
@staticmethod
def length_to_mask(lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
def _get_lr(self):
for param_group in self.optimizer.param_groups:
lr = param_group['lr']
break
return lr
@staticmethod
def moving_average(model, model_test, beta=0.999):
for param, param_test in zip(model.parameters(), model_test.parameters()):
param_test.data = torch.lerp(param.data, param_test.data, beta)
def _train_epoch(self):
self.epochs += 1
train_losses = defaultdict(list)
_ = [self.model[k].train() for k in self.model]
scaler = torch.cuda.amp.GradScaler() if (('cuda' in str(self.device)) and self.fp16_run) else None
use_con_reg = (self.epochs >= self.args.con_reg_epoch)
use_adv_cls = (self.epochs >= self.args.adv_cls_epoch)
for train_steps_per_epoch, batch in enumerate(tqdm(self.train_dataloader, desc="[train]"), 1):
### load data
batch = [b.to(self.device) for b in batch]
x_real, y_org, x_ref, x_ref2, y_trg, z_trg, z_trg2 = batch
# train the discriminator (by random reference)
self.optimizer.zero_grad()
if scaler is not None:
with torch.cuda.amp.autocast():
d_loss, d_losses_latent = compute_d_loss(self.model, self.args.d_loss, x_real, y_org, y_trg, z_trg=z_trg, use_adv_cls=use_adv_cls, use_con_reg=use_con_reg)
scaler.scale(d_loss).backward()
else:
d_loss, d_losses_latent = compute_d_loss(self.model, self.args.d_loss, x_real, y_org, y_trg, z_trg=z_trg, use_adv_cls=use_adv_cls, use_con_reg=use_con_reg)
d_loss.backward()
self.optimizer.step('discriminator', scaler=scaler)
# train the discriminator (by target reference)
self.optimizer.zero_grad()
if scaler is not None:
with torch.cuda.amp.autocast():
d_loss, d_losses_ref = compute_d_loss(self.model, self.args.d_loss, x_real, y_org, y_trg, x_ref=x_ref, use_adv_cls=use_adv_cls, use_con_reg=use_con_reg)
scaler.scale(d_loss).backward()
else:
d_loss, d_losses_ref = compute_d_loss(self.model, self.args.d_loss, x_real, y_org, y_trg, x_ref=x_ref, use_adv_cls=use_adv_cls, use_con_reg=use_con_reg)
d_loss.backward()
self.optimizer.step('discriminator', scaler=scaler)
# train the generator (by random reference)
self.optimizer.zero_grad()
if scaler is not None:
with torch.cuda.amp.autocast():
g_loss, g_losses_latent = compute_g_loss(
self.model, self.args.g_loss, x_real, y_org, y_trg, z_trgs=[z_trg, z_trg2], use_adv_cls=use_adv_cls)
scaler.scale(g_loss).backward()
else:
g_loss, g_losses_latent = compute_g_loss(
self.model, self.args.g_loss, x_real, y_org, y_trg, z_trgs=[z_trg, z_trg2], use_adv_cls=use_adv_cls)
g_loss.backward()
self.optimizer.step('generator', scaler=scaler)
self.optimizer.step('mapping_network', scaler=scaler)
self.optimizer.step('style_encoder', scaler=scaler)
# train the generator (by target reference)
self.optimizer.zero_grad()
if scaler is not None:
with torch.cuda.amp.autocast():
g_loss, g_losses_ref = compute_g_loss(
self.model, self.args.g_loss, x_real, y_org, y_trg, x_refs=[x_ref, x_ref2], use_adv_cls=use_adv_cls)
scaler.scale(g_loss).backward()
else:
g_loss, g_losses_ref = compute_g_loss(
self.model, self.args.g_loss, x_real, y_org, y_trg, x_refs=[x_ref, x_ref2], use_adv_cls=use_adv_cls)
g_loss.backward()
self.optimizer.step('generator', scaler=scaler)
# compute moving average of network parameters
self.moving_average(self.model.generator, self.model_ema.generator, beta=0.999)
self.moving_average(self.model.mapping_network, self.model_ema.mapping_network, beta=0.999)
self.moving_average(self.model.style_encoder, self.model_ema.style_encoder, beta=0.999)
self.optimizer.scheduler()
for key in d_losses_latent:
train_losses["train/%s" % key].append(d_losses_latent[key])
for key in g_losses_latent:
train_losses["train/%s" % key].append(g_losses_latent[key])
train_losses = {key: np.mean(value) for key, value in train_losses.items()}
return train_losses
@torch.no_grad()
def _eval_epoch(self):
use_adv_cls = (self.epochs >= self.args.adv_cls_epoch)
eval_losses = defaultdict(list)
eval_images = defaultdict(list)
_ = [self.model[k].eval() for k in self.model]
for eval_steps_per_epoch, batch in enumerate(tqdm(self.val_dataloader, desc="[eval]"), 1):
### load data
batch = [b.to(self.device) for b in batch]
x_real, y_org, x_ref, x_ref2, y_trg, z_trg, z_trg2 = batch
# train the discriminator
d_loss, d_losses_latent = compute_d_loss(
self.model, self.args.d_loss, x_real, y_org, y_trg, z_trg=z_trg, use_r1_reg=False, use_adv_cls=use_adv_cls)
d_loss, d_losses_ref = compute_d_loss(
self.model, self.args.d_loss, x_real, y_org, y_trg, x_ref=x_ref, use_r1_reg=False, use_adv_cls=use_adv_cls)
# train the generator
g_loss, g_losses_latent = compute_g_loss(
self.model, self.args.g_loss, x_real, y_org, y_trg, z_trgs=[z_trg, z_trg2], use_adv_cls=use_adv_cls)
g_loss, g_losses_ref = compute_g_loss(
self.model, self.args.g_loss, x_real, y_org, y_trg, x_refs=[x_ref, x_ref2], use_adv_cls=use_adv_cls)
for key in d_losses_latent:
eval_losses["eval/%s" % key].append(d_losses_latent[key])
for key in g_losses_latent:
eval_losses["eval/%s" % key].append(g_losses_latent[key])
# if eval_steps_per_epoch % 10 == 0:
# # generate x_fake
# s_trg = self.model_ema.style_encoder(x_ref, y_trg)
# F0 = self.model.f0_model.get_feature_GAN(x_real)
# x_fake = self.model_ema.generator(x_real, s_trg, masks=None, F0=F0)
# # generate x_recon
# s_real = self.model_ema.style_encoder(x_real, y_org)
# F0_fake = self.model.f0_model.get_feature_GAN(x_fake)
# x_recon = self.model_ema.generator(x_fake, s_real, masks=None, F0=F0_fake)
# eval_images['eval/image'].append(
# ([x_real[0, 0].cpu().numpy(),
# x_fake[0, 0].cpu().numpy(),
# x_recon[0, 0].cpu().numpy()]))
eval_losses = {key: np.mean(value) for key, value in eval_losses.items()}
eval_losses.update(eval_images)
return eval_losses