-
Notifications
You must be signed in to change notification settings - Fork 109
/
Copy pathtransforms.py
120 lines (99 loc) · 3.47 KB
/
transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# -*- coding: utf-8 -*-
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torchaudio
import torchaudio.functional as audio_F
import random
## 1. RandomTimeStrech
class TimeStrech(nn.Module):
def __init__(self, scale):
super(TimeStrech, self).__init__()
self.scale = scale
def forward(self, x):
mel_size = x.size(-1)
x = F.interpolate(x, scale_factor=(1, self.scale), align_corners=False,
recompute_scale_factor=True, mode='bilinear').squeeze()
if x.size(-1) < mel_size:
noise_length = (mel_size - x.size(-1))
random_pos = random.randint(0, x.size(-1)) - noise_length
if random_pos < 0:
random_pos = 0
noise = x[..., random_pos:random_pos + noise_length]
x = torch.cat([x, noise], dim=-1)
else:
x = x[..., :mel_size]
return x.unsqueeze(1)
## 2. PitchShift
class PitchShift(nn.Module):
def __init__(self, shift):
super(PitchShift, self).__init__()
self.shift = shift
def forward(self, x):
if len(x.shape) == 2:
x = x.unsqueeze(0)
x = x.squeeze()
mel_size = x.shape[1]
shift_scale = (mel_size + self.shift) / mel_size
x = F.interpolate(x.unsqueeze(1), scale_factor=(shift_scale, 1.), align_corners=False,
recompute_scale_factor=True, mode='bilinear').squeeze(1)
x = x[:, :mel_size]
if x.size(1) < mel_size:
pad_size = mel_size - x.size(1)
x = torch.cat([x, torch.zeros(x.size(0), pad_size, x.size(2)).to(x.device)], dim=1)
x = x.squeeze()
return x.unsqueeze(1)
## 3. ShiftBias
class ShiftBias(nn.Module):
def __init__(self, bias):
super(ShiftBias, self).__init__()
self.bias = bias
def forward(self, x):
return x + self.bias
## 4. Scaling
class SpectScaling(nn.Module):
def __init__(self, scale):
super(SpectScaling, self).__init__()
self.scale = scale
def forward(self, x):
return x * self.scale
## 5. Time Flip
class TimeFlip(nn.Module):
def __init__(self, length):
super(TimeFlip, self).__init__()
self.length = round(length)
def forward(self, x):
if self.length > 1:
start = np.random.randint(0, x.shape[-1] - self.length)
x_ret = x.clone()
x_ret[..., start:start + self.length] = torch.flip(x[..., start:start + self.length], dims=[-1])
x = x_ret
return x
class PhaseShuffle2d(nn.Module):
def __init__(self, n=2):
super(PhaseShuffle2d, self).__init__()
self.n = n
self.random = random.Random(1)
def forward(self, x, move=None):
# x.size = (B, C, M, L)
if move is None:
move = self.random.randint(-self.n, self.n)
if move == 0:
return x
else:
left = x[:, :, :, :move]
right = x[:, :, :, move:]
shuffled = torch.cat([right, left], dim=3)
return shuffled
def build_transforms():
transforms = [
lambda M: TimeStrech(1+ (np.random.random()-0.5)*M*0.2),
lambda M: SpectScaling(1 + (np.random.random()-1)*M*0.1),
lambda M: PhaseShuffle2d(192),
]
N, M = len(transforms), np.random.random()
composed = nn.Sequential(
*[trans(M) for trans in np.random.choice(transforms, N)]
)
return composed