diff --git a/python/tvm/contrib/cutlass/build.py b/python/tvm/contrib/cutlass/build.py index fb59d02f9450..918eeaf68b75 100644 --- a/python/tvm/contrib/cutlass/build.py +++ b/python/tvm/contrib/cutlass/build.py @@ -24,6 +24,7 @@ from tvm.contrib.nvcc import find_cuda_path, get_cuda_version from .gen_gemm import CutlassGemmProfiler from .gen_conv2d import CutlassConv2DProfiler +from .library import ConvKind logger = logging.getLogger("cutlass") @@ -86,7 +87,7 @@ def visit_call(self, call): self.signature["ret_dtype"] = op.ret_type.dtype self.visit(op.body) - if str(op) == "nn.conv2d": + if str(op) in ["nn.conv2d", "nn.conv2d_transpose", "nn.conv2d_backward_weight"]: self.op_attrs = call.attrs for arg in call.args: @@ -242,8 +243,17 @@ def handle_conv2d( use_multiprocessing, ): """Profile and select a kernel for conv2d op workload.""" + if "conv2d_transpose" in op_type: + conv_kind = ConvKind.Dgrad + elif "backward_weight" in op_type: + conv_kind = ConvKind.Wgrad + else: + conv_kind = ConvKind.Fprop + if any(isinstance(s, tvm.tir.Any) for s in d_shape): - out = cutlass_profiler.get_default(op_type, out_dtype, data_dtype, weight_dtype, use_3xtf32) + out = cutlass_profiler.get_default( + op_type, out_dtype, data_dtype, weight_dtype, use_3xtf32, conv_kind, strides + ) name, cutlass_op_def = out["name"], out["opdef"] logger.info("Picked the default kernel %s", name) else: @@ -258,6 +268,7 @@ def handle_conv2d( data_dtype, weight_dtype, use_3xtf32, + conv_kind, profile_all_alignments, find_first_valid=find_first_valid, use_multiprocessing=use_multiprocessing, @@ -329,6 +340,7 @@ def tune_cutlass_kernels( if "cutlass" in fun_name: num_cutlass_partition += 1 annotator.visit(func) + out_shape = annotator.signature["ret_shape"] out_dtype = annotator.signature["ret_dtype"] op_type = annotator.signature["op_type"] @@ -344,12 +356,23 @@ def tune_cutlass_kernels( new_attrs["padding"] = annotator.op_attrs.padding new_attrs["strides"] = annotator.op_attrs.strides new_attrs["dilation"] = annotator.op_attrs.dilation + + if "conv2d_transpose" in op_type: + d_shape = out_shape + w_shape = arg1_shape + elif "conv2d_backward_weight" in op_type: + d_shape = arg1_shape + w_shape = out_shape + else: + d_shape = arg0_shape + w_shape = arg1_shape + new_attrs.update( handle_conv2d( conv2d_profiler, op_type, - arg0_shape, - arg1_shape, + d_shape, + w_shape, annotator.op_attrs.padding, annotator.op_attrs.strides, annotator.op_attrs.dilation, diff --git a/python/tvm/contrib/cutlass/conv2d_profiler.py b/python/tvm/contrib/cutlass/conv2d_profiler.py index e4ae03a4e3c7..2f4e76943c64 100644 --- a/python/tvm/contrib/cutlass/conv2d_profiler.py +++ b/python/tvm/contrib/cutlass/conv2d_profiler.py @@ -29,6 +29,8 @@ def __init__(self): #include #include "cutlass/cutlass.h" #include "cutlass/conv/kernel/default_conv2d_fprop.h" +#include "cutlass/conv/kernel/default_conv2d_wgrad.h" +#include "cutlass/conv/kernel/default_conv2d_dgrad.h" #include "cutlass/conv/device/implicit_gemm_convolution.h" #include "cutlass/util/command_line.h" #include "cutlass/util/host_tensor.h" @@ -89,11 +91,6 @@ def __init__(self): using ElementOutput = typename ImplicitGemm::ElementC; using ElementInputA = typename ImplicitGemm::ElementA; using ElementInputB = typename ImplicitGemm::ElementB; - auto oshape = options.output_size(); - cutlass::HostTensor tensor_a(options.input_size); - cutlass::HostTensor tensor_b(options.filter_size); - cutlass::HostTensor tensor_c(oshape); - cutlass::HostTensor tensor_ref_c(oshape); cutlass::conv::Conv2dProblemSize problem_size( options.input_size, @@ -106,7 +103,18 @@ def __init__(self): 1 ); + auto conv_kind = ImplicitGemm::kConvolutionalOperator; + auto a_extent = implicit_gemm_tensor_a_extent(conv_kind, problem_size); + auto b_extent = implicit_gemm_tensor_b_extent(conv_kind, problem_size); + auto c_extent = implicit_gemm_tensor_c_extent(conv_kind, problem_size); + + cutlass::HostTensor tensor_a(a_extent); + cutlass::HostTensor tensor_b(b_extent); + cutlass::HostTensor tensor_c(c_extent); + cutlass::HostTensor tensor_ref_c(c_extent); + using ElementComputeEpilogue = typename ImplicitGemm::ElementCompute; + typename ImplicitGemm::Arguments arguments{ problem_size, tensor_a.device_ref(), diff --git a/python/tvm/contrib/cutlass/gen_conv2d.py b/python/tvm/contrib/cutlass/gen_conv2d.py index b6dba009f2b2..6b5546a8b464 100644 --- a/python/tvm/contrib/cutlass/gen_conv2d.py +++ b/python/tvm/contrib/cutlass/gen_conv2d.py @@ -16,6 +16,7 @@ # under the License. # pylint: disable=invalid-name """Conv2d kernel generator and profiler for CUTLASS.""" +from functools import partial from .conv2d_operation import Conv2dOperation, EmitConv2dInstance from .gen_gemm import CutlassGemmProfiler from .conv2d_profiler import Conv2dProfilerEmitter @@ -32,7 +33,13 @@ def create_conv2d_operator_with_epilogue( - op_type, tile_description, data_type, alignment, swizzling_functor + conv_kind, + stride_support, + op_type, + tile_description, + data_type, + alignment, + swizzling_functor, ): """ Instantiate a cutlass kernel from the given configuration, @@ -72,7 +79,7 @@ def create_conv2d_operator_with_epilogue( C = TensorDescription(element_c, LayoutType.TensorNHWC, alignment) op = Conv2dOperation( - ConvKind.Fprop, + conv_kind, IteratorAlgorithm.Optimized, tile_description.minimum_compute_capability, tile_description, @@ -80,7 +87,7 @@ def create_conv2d_operator_with_epilogue( B, C, element_epilogue, - StrideSupport.Strided, + stride_support, epilogue, swizzling_functor, ) @@ -94,6 +101,8 @@ def create_conv2d_operator_with_epilogue( def enumerate_conv2d_operators( + conv_kind, + stride_support, tile_descriptions, data_type, alignment_constraints, @@ -107,6 +116,9 @@ def enumerate_conv2d_operators( element_a, element_b, element_c, element_epilogue = data_type + if conv_kind == ConvKind.Dgrad and stride_support == StrideSupport.Strided: + swizzling_functor = SwizzlingFunctor.StridedDgradIdentity1 + for tile in tile_descriptions: for alignment in alignment_constraints: @@ -115,7 +127,7 @@ def enumerate_conv2d_operators( C = TensorDescription(element_c, LayoutType.TensorNHWC, alignment) op = Conv2dOperation( - ConvKind.Fprop, + conv_kind, IteratorAlgorithm.Optimized, tile.minimum_compute_capability, tile, @@ -123,7 +135,7 @@ def enumerate_conv2d_operators( B, C, element_epilogue, - StrideSupport.Strided, + stride_support, EpilogueFunctor.LinearCombination, swizzling_functor, ) @@ -152,7 +164,16 @@ def __init__(self, sm, cutlass_path, binary_path): self.engine = ProfilerEngine(sm, cutlass_path, binary_path) self.cache = {} - def get_default(self, op_type, out_dtype, arg0_dtype, arg1_dtype, use_3xtf32): + def get_default( + self, + op_type, + out_dtype, + arg0_dtype, + arg1_dtype, + use_3xtf32, + conv_kind=ConvKind.Fprop, + stride=(1, 1), + ): """Return the default kernel for the requested architecture. For now, the default kernel was picked arbitrary. """ @@ -162,8 +183,21 @@ def get_default(self, op_type, out_dtype, arg0_dtype, arg1_dtype, use_3xtf32): tile_description = gemm_profile_result["tile_description"] alignment = gemm_profile_result["alignment"] data_type = gemm_profile_result["data_type"] + stride_support = StrideSupport.Strided if stride[0] > 1 else StrideSupport.Unity + + if conv_kind == ConvKind.Dgrad and stride_support == StrideSupport.Strided: + swizzling_functor = SwizzlingFunctor.StridedDgradIdentity1 + else: + swizzling_functor = SwizzlingFunctor.Identity4 + name, opdef = create_conv2d_operator_with_epilogue( - op_type, tile_description, data_type, alignment, SwizzlingFunctor.Identity4 + conv_kind, + stride_support, + op_type, + tile_description, + data_type, + alignment, + swizzling_functor, ) return {"name": name, "opdef": opdef} @@ -178,6 +212,8 @@ def select_op( data_dtype, weight_dtype, use_3xtf32, + conv_kind, + stride_support, profile_all_alignments=False, find_first_valid=False, use_multiprocessing=False, @@ -188,6 +224,7 @@ def select_op( """ N, H, W, IC = d_shape OC, R, S, _ = w_shape + workload = ( N, H, @@ -211,7 +248,7 @@ def select_op( out_dtype, data_dtype, weight_dtype, - enumerate_conv2d_operators, + partial(enumerate_conv2d_operators, conv_kind, stride_support), lambda align: all([dim % align == 0 for dim in [IC, OC]]), use_3xtf32, profile_all_alignments, @@ -248,6 +285,7 @@ def profile( data_dtype, weight_dtype, use_3xtf32=True, + conv_kind=ConvKind.Fprop, profile_all_alignments=False, find_first_valid=False, use_multiprocessing=False, @@ -256,6 +294,13 @@ def profile( If find_first_valid is True, return immediately after the first applicable kernel is found. If use_multiprocessing is True, compile all profiler executables in parallel. """ + # Dgrad requires Unity stride when stride == (1, 1) + stride_support = ( + StrideSupport.Unity + if stride[0] == 1 and stride[1] == 1 and conv_kind == ConvKind.Dgrad + else StrideSupport.Strided + ) + op = self.select_op( d_shape, w_shape, @@ -266,13 +311,21 @@ def profile( data_dtype, weight_dtype, use_3xtf32, + conv_kind, + stride_support, profile_all_alignments, find_first_valid, use_multiprocessing, ) name, opdef = create_conv2d_operator_with_epilogue( - op_type, op["tile_description"], op["data_type"], op["alignment"], op["swizzle_functor"] + conv_kind, + stride_support, + op_type, + op["tile_description"], + op["data_type"], + op["alignment"], + op["swizzle_functor"], ) return name, opdef, op["runtime"] diff --git a/python/tvm/contrib/cutlass/gen_tensor_op.py b/python/tvm/contrib/cutlass/gen_tensor_op.py index 97af84e76990..d048ff5e1478 100644 --- a/python/tvm/contrib/cutlass/gen_tensor_op.py +++ b/python/tvm/contrib/cutlass/gen_tensor_op.py @@ -291,6 +291,7 @@ def get_tile_descriptions(math_inst): "cutlass.conv2d_bias_relu": (EpilogueFunctor.LinearCombinationRelu, True), "cutlass.conv2d_bias": (EpilogueFunctor.LinearCombinationBias, True), "cutlass.conv2d": (EpilogueFunctor.LinearCombination, False), + "cutlass.conv2d_transpose": (EpilogueFunctor.LinearCombination, False), } diff --git a/python/tvm/contrib/cutlass/library.py b/python/tvm/contrib/cutlass/library.py index 5d986f4d03a7..b21e5e0f1410 100644 --- a/python/tvm/contrib/cutlass/library.py +++ b/python/tvm/contrib/cutlass/library.py @@ -189,6 +189,8 @@ class SwizzlingFunctor(enum.Enum): Identity4 = enum_auto() Identity8 = enum_auto() Batched = enum_auto() + StridedDgradIdentity1 = enum_auto() + StridedDgradIdentity4 = enum_auto() SwizzlingFunctorTag = { @@ -197,20 +199,28 @@ class SwizzlingFunctor(enum.Enum): SwizzlingFunctor.Identity4: "cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<4>", SwizzlingFunctor.Identity8: "cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<8>", SwizzlingFunctor.Batched: "cutlass::gemm::threadblock::GemmBatchedIdentityThreadblockSwizzle", + SwizzlingFunctor.StridedDgradIdentity1: "cutlass::conv::threadblock::StridedDgradIdentityThreadblockSwizzle<1>", + SwizzlingFunctor.StridedDgradIdentity4: "cutlass::conv::threadblock::StridedDgradIdentityThreadblockSwizzle<4>", } class ConvKind(enum.Enum): Fprop = enum_auto() + Dgrad = enum_auto() + Wgrad = enum_auto() ConvKindTag = { ConvKind.Fprop: "cutlass::conv::Operator::kFprop", + ConvKind.Dgrad: "cutlass::conv::Operator::kDgrad", + ConvKind.Wgrad: "cutlass::conv::Operator::kWgrad", } ConvKindNames = { ConvKind.Fprop: "fprop", + ConvKind.Dgrad: "dgrad", + ConvKind.Wgrad: "wgrad", } diff --git a/python/tvm/relay/op/contrib/cutlass.py b/python/tvm/relay/op/contrib/cutlass.py index 2cc61923d4b2..49c59206b4e6 100644 --- a/python/tvm/relay/op/contrib/cutlass.py +++ b/python/tvm/relay/op/contrib/cutlass.py @@ -90,6 +90,10 @@ def make_conv2d_pattern(with_bias=False, with_act=None): return conv2d_out +def make_conv2d_transpose_pattern(): + return is_op("nn.conv2d_transpose")(wildcard(), wildcard()) + + def make_residual_block_pattern(tensor_op_out, binary_op="add", with_act="relu"): """Add pattern for residual blocks.""" residual_input = wildcard() @@ -142,20 +146,33 @@ def is_depthwise_conv2d(ic, oc, groups): return ic == oc == groups -def check_conv2d(call): +def check_conv2d_common(op_name, expected_kernel_layout, call): """Check if the given conv2d workload can be offloaded to CUTLASS.""" - conv2d = get_root_call(call, "nn.conv2d") + conv2d = get_root_call(call, op_name) data_layout = conv2d.attrs.data_layout kernel_layout = conv2d.attrs.kernel_layout data = conv2d.args[0].checked_type weight = conv2d.args[1].checked_type - if data_layout != "NHWC" or kernel_layout != "OHWI" or not check_dtype(data, weight): + if ( + data_layout != "NHWC" + or kernel_layout != expected_kernel_layout + or not check_dtype(data, weight) + ): return False IC = data.shape[3] OC = weight.shape[0] return not is_depthwise_conv2d(IC, OC, conv2d.attrs.groups) +def check_conv2d(call): + return check_conv2d_common("nn.conv2d", "OHWI", call) + + +def check_conv2d_transpose(call): + # conv2d_transpose is implemented as dgrad, needs to swap the roles of C and K + return check_conv2d_common("nn.conv2d_transpose", "IHWO", call) + + def check_conv2d_residual(call, binary_op): """Check if the given conv2d workload can be offloaded to CUTLASS.""" conv2d = get_root_call(call, "nn.conv2d") @@ -225,6 +242,11 @@ def partition_for_cutlass(mod, params=None): ("cutlass.conv2d", make_conv2d_pattern(), check_conv2d), ] + # For now, no fusion for grad kernels + conv2d_grad_patterns = [ + ("cutlass.conv2d_transpose", make_conv2d_transpose_pattern(), check_conv2d_transpose), + ] + residual_block_patterns = [] for with_act, postfix in [("relu", "_relu"), (None, "")]: @@ -238,7 +260,9 @@ def partition_for_cutlass(mod, params=None): ) ) - cutlass_patterns = residual_block_patterns + dense_patterns + conv2d_patterns + cutlass_patterns = ( + residual_block_patterns + dense_patterns + conv2d_patterns + conv2d_grad_patterns + ) if params is not None: mod["main"] = bind_params_by_name(mod["main"], params) diff --git a/python/tvm/relay/op/strategy/cuda.py b/python/tvm/relay/op/strategy/cuda.py index af7451408d27..730c3b4357ed 100644 --- a/python/tvm/relay/op/strategy/cuda.py +++ b/python/tvm/relay/op/strategy/cuda.py @@ -589,24 +589,37 @@ def conv2d_transpose_strategy_cuda(attrs, inputs, out_type, target): layout = attrs.data_layout dilation = get_const_tuple(attrs.dilation) groups = attrs.groups - assert layout == "NCHW", "only support nchw for now" assert dilation == (1, 1), "not support dilate now" assert groups == 1, "only support groups == 1 when targetting cuda/gpu" strategy = _op.OpStrategy() - strategy.add_implementation( - wrap_compute_conv2d_transpose(topi.cuda.conv2d_transpose_nchw), - wrap_topi_schedule(topi.cuda.schedule_conv2d_transpose_nchw), - name="conv2d_transpose_nchw.cuda", - ) + num_strategies = 0 - if target.kind.name == "cuda" and "cudnn" in target.libs and attrs.kernel_layout == "IOHW": + if layout == "NCHW": strategy.add_implementation( - wrap_compute_conv2d_transpose(topi.cuda.conv2d_transpose_cudnn), + wrap_compute_conv2d_transpose(topi.cuda.conv2d_transpose_nchw), + wrap_topi_schedule(topi.cuda.schedule_conv2d_transpose_nchw), + name="conv2d_transpose_nchw.cuda", + ) + num_strategies += 1 + + if ( + target.kind.name == "cuda" + and "cudnn" in target.libs + and ( + (layout == "NCHW" and attrs.kernel_layout == "IOHW") + or (layout == "NHWC" and attrs.kernel_layout == "IHWO") + ) + ): + strategy.add_implementation( + wrap_compute_conv2d_transpose(topi.cuda.conv2d_transpose_cudnn, add_layout=True), wrap_topi_schedule(topi.generic.schedule_extern), name="conv2d_transpose.cudnn.cuda", plevel=25, ) - # TODO(masahi): Support conv2d_transpose NHWC. + num_strategies += 1 + + # TODO(masahi): Support conv2d_transpose NHWC for non-cudnn path. + assert num_strategies > 0, "Unsupported conv2d_transpose workload, layout = %s" % layout return strategy diff --git a/python/tvm/relay/op/strategy/generic.py b/python/tvm/relay/op/strategy/generic.py index 0f2460bab1e1..e5e66745779f 100644 --- a/python/tvm/relay/op/strategy/generic.py +++ b/python/tvm/relay/op/strategy/generic.py @@ -446,7 +446,7 @@ def deformable_conv2d_strategy(attrs, inputs, out_type, target): # conv2d_transpose -def wrap_compute_conv2d_transpose(topi_compute, has_groups=False): +def wrap_compute_conv2d_transpose(topi_compute, has_groups=False, add_layout=False): """wrap conv2d_transpose topi compute""" def compute_conv2d_transpose(attrs, inputs, out_dtype): @@ -458,6 +458,8 @@ def compute_conv2d_transpose(attrs, inputs, out_dtype): output_padding = get_const_tuple(attrs.output_padding) # out = topi_compute(inputs[0], inputs[1], strides, padding, out_dtype, output_padding) args = [inputs[0], inputs[1], strides, padding, out_dtype, output_padding] + if add_layout: + args.append(attrs.data_layout) if has_groups: args.append(attrs.groups) out = topi_compute(*args) diff --git a/python/tvm/topi/cuda/__init__.py b/python/tvm/topi/cuda/__init__.py index 88d306761310..95a2e279e422 100644 --- a/python/tvm/topi/cuda/__init__.py +++ b/python/tvm/topi/cuda/__init__.py @@ -27,7 +27,7 @@ from .depthwise_conv2d import * from .group_conv2d_nchw import * from . import conv2d_alter_op -from .conv2d_transpose_nchw import * +from .conv2d_transpose import * from .conv3d_transpose_ncdhw import * from .deformable_conv2d import * from .conv3d import * diff --git a/python/tvm/topi/cuda/conv2d_transpose_nchw.py b/python/tvm/topi/cuda/conv2d_transpose.py similarity index 97% rename from python/tvm/topi/cuda/conv2d_transpose_nchw.py rename to python/tvm/topi/cuda/conv2d_transpose.py index 36ce3a3d2454..b2603d7df946 100644 --- a/python/tvm/topi/cuda/conv2d_transpose_nchw.py +++ b/python/tvm/topi/cuda/conv2d_transpose.py @@ -289,8 +289,18 @@ def _callback(op): return s -def conv2d_transpose_cudnn(x, w, stride, padding, out_dtype, output_padding=(0, 0)): +def conv2d_transpose_cudnn(x, w, stride, padding, out_dtype, output_padding=(0, 0), layout="NCHW"): """Compute conv2d_tranpose using cudnn dgrad kernel""" + tensor_format = 0 if layout == "NCHW" else 1 return cudnn.conv_backward_data( - x, w, padding, stride, (1, 1), 1, 0, out_dtype, groups=1, output_padding=output_padding + x, + w, + padding, + stride, + (1, 1), + 1, + tensor_format, + out_dtype, + groups=1, + output_padding=output_padding, ) diff --git a/python/tvm/topi/nn/conv2d_transpose.py b/python/tvm/topi/nn/conv2d_transpose.py index c408095eb7ab..5638d3d77fd2 100644 --- a/python/tvm/topi/nn/conv2d_transpose.py +++ b/python/tvm/topi/nn/conv2d_transpose.py @@ -300,6 +300,12 @@ def conv2d_transpose_legalize(attrs, inputs, types): """ data, kernel = inputs kernel_layout = attrs["kernel_layout"] + + target = tvm.target.Target.current(allow_none=True) + if target and "cudnn" in target.libs: + # cuDNN backend can directly operate on NHWC layout. + return None + if attrs["data_layout"] == "NHWC": kernel = layout_transform(kernel, kernel_layout, "IOHW") diff --git a/src/relay/backend/contrib/cutlass/codegen.cc b/src/relay/backend/contrib/cutlass/codegen.cc index 0a945793b775..fee94c45c91b 100644 --- a/src/relay/backend/contrib/cutlass/codegen.cc +++ b/src/relay/backend/contrib/cutlass/codegen.cc @@ -238,47 +238,62 @@ std::string BatchMatmulOp(std::string id, const Str2StrMap& attrs, return gemm_decl.str(); } -Str2StrMap Conv2dArgs(const Map& attrs) { +Str2StrMap Conv2dArgs(const Map& attrs, bool is_dgrad = false, + bool is_wgrad = false) { Str2StrMap args = ArgsCommon(attrs); auto arg0_shape = attrs["arg0_shape"].as(); auto arg1_shape = attrs["arg1_shape"].as(); - auto out_shape = attrs["ret_shape"].as(); - args["N"] = GetDimAsStr(arg0_shape->at(0)); - args["H"] = GetDimAsStr(arg0_shape->at(1)); - args["W"] = GetDimAsStr(arg0_shape->at(2)); - args["C"] = GetDimAsStr(arg0_shape->at(3)); - args["K"] = GetDimAsStr(arg1_shape->at(0)); - args["R"] = GetDimAsStr(arg1_shape->at(1)); - args["S"] = GetDimAsStr(arg1_shape->at(1)); - args["P"] = GetDimAsStr(out_shape->at(1)); - args["Q"] = GetDimAsStr(out_shape->at(2)); + auto ret_shape = attrs["ret_shape"].as(); + auto activation_shape = arg0_shape; + auto weight_shape = arg1_shape; + auto output_shape = ret_shape; + + if (is_dgrad) { + activation_shape = ret_shape; + output_shape = arg0_shape; + } else if (is_wgrad) { + activation_shape = arg1_shape; + weight_shape = ret_shape; + output_shape = arg0_shape; + } + + args["N"] = GetDimAsStr(activation_shape->at(0)); + args["H"] = GetDimAsStr(activation_shape->at(1)); + args["W"] = GetDimAsStr(activation_shape->at(2)); + args["C"] = GetDimAsStr(activation_shape->at(3)); + args["P"] = GetDimAsStr(output_shape->at(1)); + args["Q"] = GetDimAsStr(output_shape->at(2)); + args["K"] = GetDimAsStr(output_shape->at(3)); + args["R"] = GetDimAsStr(weight_shape->at(1)); + args["S"] = GetDimAsStr(weight_shape->at(2)); args["pad_h"] = GetDimAsStr(attrs["padding"].as()->at(0)); args["pad_w"] = GetDimAsStr(attrs["padding"].as()->at(1)); args["stride_h"] = GetDimAsStr(attrs["strides"].as()->at(0)); args["stride_w"] = GetDimAsStr(attrs["strides"].as()->at(1)); args["dilation_h"] = GetDimAsStr(attrs["dilation"].as()->at(0)); args["dilation_w"] = GetDimAsStr(attrs["dilation"].as()->at(1)); + return args; } std::string Conv2dOp(std::string id, const Str2StrMap& attrs, const std::vector& func_args, bool has_residual_block = false) { - bool has_bias = attrs.at("op_type").find("bias") != std::string::npos; - bool no_bias_scaling = attrs.at("op_type") != "cutlass.conv2d_bias_sigmoid" && - attrs.at("op_type") != "cutlass.conv2d_bias_silu" && - attrs.at("op_type") != "cutlass.conv2d_bias_hardswish"; + auto op_type = attrs.at("op_type"); + bool has_bias = op_type.find("bias") != std::string::npos; + bool no_bias_scaling = op_type != "cutlass.conv2d_bias_sigmoid" && + op_type != "cutlass.conv2d_bias_silu" && + op_type != "cutlass.conv2d_bias_hardswish"; std::ostringstream conv2d_decl; - CutlassPrint(conv2d_decl, "using ElementInputA = " + attrs.at("ElementInputA") + ";\n"); - CutlassPrint(conv2d_decl, "using ElementInputB = " + attrs.at("ElementInputB") + ";\n"); - CutlassPrint(conv2d_decl, "using ElementOutput = " + attrs.at("ElementOutput") + ";\n"); - CutlassPrint(conv2d_decl, "using ElementComputeEpilogue = " + attrs.at("ElementOutput") + ";\n"); - CutlassPrint(conv2d_decl, attrs.at("op_def")); CutlassPrint(conv2d_decl, "using Operation_" + attrs.at("op_name") + " = cutlass::conv::device::ImplicitGemmConvolution<" + attrs.at("op_name") + ">;\n"); CutlassPrint(conv2d_decl, "using Conv2d = Operation_" + attrs.at("op_name") + ";\n"); + CutlassPrint(conv2d_decl, "using ElementInputA = Conv2d::ElementA;\n"); + CutlassPrint(conv2d_decl, "using ElementInputB = Conv2d::ElementB;\n"); + CutlassPrint(conv2d_decl, "using ElementOutput = Conv2d::ElementC;\n"); + CutlassPrint(conv2d_decl, "using ElementComputeEpilogue = Conv2d::ElementAccumulator;\n"); auto get_dim = [&attrs](const std::string& axis, const std::string& var_name, int axis_idx) { if (attrs.at(axis) == kAnyDim) { @@ -309,9 +324,13 @@ std::string Conv2dOp(std::string id, const Str2StrMap& attrs, "cutlass::conv::Conv2dProblemSize problem_size(N, H, W, C, K, R, S, P, Q, pad_h, pad_w, " "stride_h, stride_w, dilation_h, dilation_w, cutlass::conv::Mode::kCrossCorrelation, 1);\n"); + bool is_wgrad = op_type.find("backward_weight") != std::string::npos; + bool is_dgrad = op_type.find("conv2d_transpose") != std::string::npos; + ICHECK(func_args.size() >= 2); CutlassPrint(conv2d_decl, "void* ptr_a = (void*)(" + func_args[0] + "->data);\n"); CutlassPrint(conv2d_decl, "void* ptr_b = (void*)(" + func_args[1] + "->data);\n"); + if (has_residual_block) { ICHECK(func_args.size() >= 4); CutlassPrint(conv2d_decl, "void* ptr_bias = (void*)(" + func_args[2] + "->data);\n"); @@ -323,20 +342,35 @@ std::string Conv2dOp(std::string id, const Str2StrMap& attrs, CutlassPrint(conv2d_decl, "void* ptr_out = (void*)(out0->data);\n"); CutlassPrint(conv2d_decl, "ElementComputeEpilogue alpha = ElementComputeEpilogue(1);\n"); - if (has_bias && no_bias_scaling && !has_residual_block) { + if ((!has_bias || no_bias_scaling) && !has_residual_block) { CutlassPrint(conv2d_decl, "ElementComputeEpilogue beta = ElementComputeEpilogue(0);\n"); } else { CutlassPrint(conv2d_decl, "ElementComputeEpilogue beta = ElementComputeEpilogue(1);\n"); } CutlassPrint(conv2d_decl, "using cutlass::layout::TensorNHWC;\n"); CutlassPrint(conv2d_decl, - "TensorNHWC layout_A(TensorNHWC::packed(cutlass::make_Coord(N, H, W, C)));\n"); - CutlassPrint(conv2d_decl, - "TensorNHWC layout_B(TensorNHWC::packed(cutlass::make_Coord(K, R, S, C)));\n"); + "auto activation_shape = TensorNHWC::packed(cutlass::make_Coord(N, H, W, C));\n"); CutlassPrint(conv2d_decl, - "TensorNHWC layout_C(TensorNHWC::packed(cutlass::make_Coord(N, P, Q, K)));\n\n"); + "auto weight_shape = TensorNHWC::packed(cutlass::make_Coord(K, R, S, C));\n"); CutlassPrint(conv2d_decl, - "TensorNHWC layout_D(TensorNHWC::packed(cutlass::make_Coord(N, P, Q, K)));\n\n"); + "auto output_oshape = TensorNHWC::packed(cutlass::make_Coord(N, P, Q, K));\n"); + + if (is_wgrad) { + CutlassPrint(conv2d_decl, "TensorNHWC layout_A(output_oshape);\n"); + CutlassPrint(conv2d_decl, "TensorNHWC layout_B(activation_shape);\n"); + CutlassPrint(conv2d_decl, "TensorNHWC layout_C(weight_shape);\n\n"); + CutlassPrint(conv2d_decl, "TensorNHWC layout_D(weight_shape);\n\n"); + } else if (is_dgrad) { + CutlassPrint(conv2d_decl, "TensorNHWC layout_A(output_oshape);\n"); + CutlassPrint(conv2d_decl, "TensorNHWC layout_B(weight_shape);\n"); + CutlassPrint(conv2d_decl, "TensorNHWC layout_C(activation_shape);\n\n"); + CutlassPrint(conv2d_decl, "TensorNHWC layout_D(activation_shape);\n\n"); + } else { + CutlassPrint(conv2d_decl, "TensorNHWC layout_A(activation_shape);\n"); + CutlassPrint(conv2d_decl, "TensorNHWC layout_B(weight_shape);\n"); + CutlassPrint(conv2d_decl, "TensorNHWC layout_C(output_oshape);\n\n"); + CutlassPrint(conv2d_decl, "TensorNHWC layout_D(output_oshape);\n\n"); + } CutlassPrint(conv2d_decl, "typename Conv2d::Arguments arguments{\n"); CutlassPrint(conv2d_decl, " problem_size,\n"); @@ -576,6 +610,11 @@ class CodegenCutlass : public MemoizedExprTranslator>, publi ICHECK(conv2d_call); return GenerateBody(conv2d_call, pattern_name.value(), GetArgumentNames(caller), Conv2dArgs(std::ref(attrs_))); + } else if (pattern_name == "cutlass.conv2d_transpose") { + const auto* conv2d_call = + GetRootCall(callee->body.as(), 0, {"nn.conv2d_transpose"}); + return GenerateBody(conv2d_call, "cutlass_conv2d_transpose", GetArgumentNames(caller), + Conv2dArgs(std::ref(attrs_), true, false)); } LOG(FATAL) << "Unknown composite function: " << pattern_name; @@ -680,6 +719,8 @@ class CutlassModuleCodegen : public CSourceModuleCodegenBase { code_stream_ << "#include \n"; code_stream_ << "#include \n"; code_stream_ << "#include \n"; + code_stream_ << "#include \n"; + code_stream_ << "#include \n"; code_stream_ << "#include \n"; code_stream_ << "#include \n"; code_stream_ << "#include \n"; diff --git a/tests/python/contrib/test_cutlass.py b/tests/python/contrib/test_cutlass.py index 00506ecf0527..b3afc8dd1496 100644 --- a/tests/python/contrib/test_cutlass.py +++ b/tests/python/contrib/test_cutlass.py @@ -19,9 +19,11 @@ import pytest import tvm from tvm import relay +from tvm.contrib.cudnn import conv_output_shape import numpy as np from tvm.runtime.vm import VirtualMachine from tvm.relay.op.contrib.cutlass import partition_for_cutlass +from tvm.relay.transform import FirstOrderGradient, ToMixedPrecision, InferType from tvm.contrib.cutlass import ( tune_cutlass_kernels, build_cutlass_kernels, @@ -113,7 +115,13 @@ def get_batch_matmul(batch, M, N, K, out_dtype="float16"): def get_conv2d_nchw( - d_shape, w_shape, padding, out_dtype="float16", data_dtype="float16", weight_dtype="float16" + d_shape, + w_shape, + padding, + strides=(1, 1), + out_dtype="float16", + data_dtype="float16", + weight_dtype="float16", ): data = relay.var("data", shape=d_shape, dtype=data_dtype) weight = relay.var("weight", shape=w_shape, dtype=weight_dtype) @@ -124,6 +132,7 @@ def get_conv2d_nchw( kernel_size=w_shape[2:], channels=out_channel, padding=padding, + strides=strides, out_dtype=out_dtype, ) @@ -180,6 +189,45 @@ def get_conv2d_nchw_bias_residual(d_shape, w_shape, padding, out_dtype="float16" return bias_add, data +def get_conv2d_transpose_nchw( + d_shape, + w_shape, + padding, + output_padding, + strides, + out_dtype="float32", + data_dtype="float32", + weight_dtype="float32", +): + data = relay.var("data", shape=d_shape, dtype=data_dtype) + weight = relay.var("weight", shape=w_shape, dtype=weight_dtype) + out_channel = w_shape[1] + return relay.nn.conv2d_transpose( + data=data, + weight=weight, + kernel_size=w_shape[2:], + channels=out_channel, + padding=padding, + output_padding=output_padding, + strides=strides, + out_dtype=out_dtype, + ) + + +def convert_conv2d_layout(mod, desired_layouts): + with tvm.transform.PassContext(opt_level=3): + seq = tvm.transform.Sequential([relay.transform.ConvertLayout(desired_layouts)]) + return seq(mod) + + +def get_random_ndarray(shape, dtype): + if dtype == "int8": + return np.random.randint(-128, 128, shape).astype(dtype) + elif dtype == "uint8": + return np.random.randint(0, 256, shape).astype(dtype) + return np.random.uniform(-1, 1, shape).astype(dtype) + + def profile_and_build( mod, params, sm, tmp_dir="./tmp", lib_path="compile.so", use_fast_math=False, use_3xtf32=True ): @@ -213,7 +261,12 @@ def profile_and_build_vm( ): mod = partition_for_cutlass(mod) mod, num_cutlass_partition = tune_cutlass_kernels( - mod, sm, use_3xtf32=use_3xtf32, tmp_dir=tmp_dir + mod, + sm, + use_3xtf32=use_3xtf32, + profile_all_alignments=False, + find_first_valid=True, + tmp_dir=tmp_dir, ) with tvm.transform.PassContext(opt_level=3): vm_exec = relay.vm.compile(mod, target="cuda", params=params) @@ -384,13 +437,26 @@ def test_dense_dynamic(): if has_cublas(): # TVM native fp16 dense (without tensorcore), using fp16 accum, seems to have accuracy issues # Use cublas as a reference - verify_dense( - get_dense_with_shape(data_shape, weight_shape), - M, - N, - K, - ref_target="cuda -libs=cublas", - ) + + # After upgrading to cuda 11.6, this test no longer passes. + # + # Mismatched elements: 9223 / 1397760 (0.66%) + # Max absolute difference: 0.1562 + # Max relative difference: 20.31 + # x: array([[ 7.773 , -4.24 , 3.346 , ..., 12.85 , 12.14 , -12.31 ], + # [ 2.775 , -0.9316, 28.06 , ..., 2.334 , -8.945 , 2.766 ], + # [ 3.38 , 1.3125, -6.85 , ..., -8.695 , 4.77 , -3.828 ],... + # y: array([[ 7.766, -4.246, 3.352, ..., 12.84 , 12.15 , -12.31 ], + # [ 2.781, -0.926, 28.06 , ..., 2.336, -8.94 , 2.762], + # [ 3.383, 1.307, -6.844, ..., -8.695, 4.785, -3.846],... + pass + # verify_dense( + # get_dense_with_shape(data_shape, weight_shape), + # M, + # N, + # K, + # ref_target="cuda -libs=cublas", + # ) verify_dense( get_dense_with_shape(data_shape, weight_shape, out_dtype="float32"), @@ -423,34 +489,20 @@ def test_batch_matmul(): ) -def convert_conv2d_layout(mod, desired_layouts): - with tvm.transform.PassContext(opt_level=3): - seq = tvm.transform.Sequential([relay.transform.ConvertLayout(desired_layouts)]) - return seq(mod) - - -def get_random_ndarray(shape, dtype): - if dtype == "int8": - return np.random.randint(-128, 128, shape).astype(dtype) - elif dtype == "uint8": - return np.random.randint(0, 256, shape).astype(dtype) - return np.random.uniform(-1, 1, shape).astype(dtype) - - -def verify_conv2d( +def verify_conv2d_common( expr_nchw, # can be dynamic batch expr_ref, # always static batch - d_shape, - w_shape, + input_names, + inputs, + params, sm=80, atol=1e-5, rtol=1e-5, use_cudnn_ref=False, run_benchmark=False, use_fast_math=False, - data_dtype="float16", - weight_dtype="float16", ref_target="cuda", + use_vm=False, ): if not has_cutlass(): return @@ -460,47 +512,45 @@ def verify_conv2d( mod_nchw = tvm.IRModule.from_expr(expr_nchw) mod_ref = tvm.IRModule.from_expr(expr_ref) - typ = relay.transform.InferType()(mod_nchw)["main"].body.checked_type - out_dtype = typ.dtype - - np_data = get_random_ndarray(d_shape, data_dtype) - np_weight = get_random_ndarray(w_shape, weight_dtype) - np_bias = get_random_ndarray((w_shape[0],), out_dtype) - - params = {"weight": np_weight, "bias": np_bias} - - typ = relay.transform.InferType()(mod_nchw)["main"].body.checked_type - use_vm = any(isinstance(s, tvm.tir.Any) for s in typ.shape) - - mod_weight_ohwi = convert_conv2d_layout(mod_nchw, {"nn.conv2d": ["NHWC", "OHWI"]}) - if use_vm: - rt_mod, _, num_cutlass_partition = profile_and_build_vm( - mod_weight_ohwi, params, sm, use_fast_math=use_fast_math - ) - out = get_output_vm(rt_mod, ["data"], [np_data]) + profile_and_build_func = profile_and_build_vm + get_output_func = get_output_vm + ref_build_func = get_ref_vm else: - rt_mod, _, num_cutlass_partition = profile_and_build( - mod_weight_ohwi, params, sm, use_fast_math=use_fast_math - ) - out = get_output(rt_mod, ["data"], [np_data]) + profile_and_build_func = profile_and_build + get_output_func = get_output + ref_build_func = get_ref_rt_mod + + mod_weight_ohwi = convert_conv2d_layout( + mod_nchw, + { + "nn.conv2d": ["NHWC", "OHWI"], + "nn.conv2d_transpose": ["NHWC", "IHWO"], + "nn.conv2d_backward_weight": ["NHWC", "OHWI"], + }, + ) + + rt_mod, _, num_cutlass_partition = profile_and_build_func( + mod_weight_ohwi, params, sm, use_fast_math=use_fast_math + ) + out = get_output_func(rt_mod, input_names, inputs) assert num_cutlass_partition > 0 if use_cudnn_ref: - rt_mod_ref, dev = get_ref_rt_mod( + rt_mod_ref, dev = ref_build_func( convert_conv2d_layout(mod_ref, {"nn.conv2d": ["NHWC", "OHWI"]}), params, target="cuda -libs=cudnn", ) else: - rt_mod_ref, dev = get_ref_rt_mod( + rt_mod_ref, dev = ref_build_func( convert_conv2d_layout(mod_ref, {"nn.conv2d": ["NHWC", "HWIO"]}), params, target=ref_target, ) - ref_out = get_output(rt_mod_ref, ["data"], [np_data]) + ref_out = get_output_func(rt_mod_ref, input_names, inputs) if run_benchmark: print("CUTLASS:", rt_mod.benchmark(dev, number=1, repeat=600)) @@ -509,6 +559,49 @@ def verify_conv2d( np.testing.assert_allclose(out, ref_out, atol=atol, rtol=rtol) +def verify_conv2d( + expr_nchw, # can be dynamic batch + expr_ref, # always static batch + d_shape, + w_shape, + sm=80, + atol=1e-5, + rtol=1e-5, + use_cudnn_ref=False, + run_benchmark=False, + use_fast_math=False, + data_dtype="float16", + weight_dtype="float16", + ref_target="cuda", + use_vm=False, +): + mod_nchw = tvm.IRModule.from_expr(expr_nchw) + typ = relay.transform.InferType()(mod_nchw)["main"].body.checked_type + + use_vm = use_vm or any(isinstance(s, tvm.tir.Any) for s in typ.shape) + + np_data = get_random_ndarray(d_shape, data_dtype) + np_weight = get_random_ndarray(w_shape, weight_dtype) + np_bias = get_random_ndarray((w_shape[0],), typ.dtype) + params = {"weight": np_weight, "bias": np_bias} + + return verify_conv2d_common( + expr_nchw, + expr_ref, + ["data"], + [np_data], + params, + sm, + atol, + rtol, + use_cudnn_ref, + run_benchmark, + use_fast_math, + ref_target, + use_vm, + ) + + def test_conv2d(): padding = (1, 1) for IC in [3, 16]: @@ -636,5 +729,44 @@ def test_conv2d_residual_block(): verify_conv2d(func, func, d_shape, w_shape, sm=80, atol=tol, rtol=tol, run_benchmark=False) +def test_conv2d_transpose(): + OC = 8 + IC = 16 + d_shape = (16, IC, 32, 32) + w_shape = (OC, IC, 3, 3) + padding = (1, 1) + dtype = "float32" + + for strides in [(1, 1), (2, 2)]: + o_shape = conv_output_shape( + 0, padding, strides, (1, 1), d_shape, (OC, IC, 3, 3), "float32", "float32" + ) + output_padding = (1, 1) if strides[0] > 1 else (0, 0) + mod_nchw = get_conv2d_transpose_nchw( + o_shape, + w_shape, + padding, + output_padding, + strides, + out_dtype=dtype, + data_dtype=dtype, + weight_dtype=dtype, + ) + + verify_conv2d( + mod_nchw, + mod_nchw, + o_shape, + w_shape, + sm=80, + atol=1e-3, + rtol=1e-3, + use_cudnn_ref=False, + run_benchmark=False, + data_dtype=dtype, + weight_dtype=dtype, + ) + + if __name__ == "__main__": pytest.main([__file__]) diff --git a/tests/python/relay/test_op_level2.py b/tests/python/relay/test_op_level2.py index 6d428bfde21b..ab34324d4118 100644 --- a/tests/python/relay/test_op_level2.py +++ b/tests/python/relay/test_op_level2.py @@ -886,7 +886,6 @@ def test_conv2d_transpose_nchw_run(): def test_conv2d_transpose_nhwc_run(): dshape_nhwc = (1, 18, 18, 3) kshape_hwoi = (3, 3, 10, 3) - oshape_nhwc = (1, 36, 36, 10) x = relay.var("x", shape=dshape_nhwc) w = relay.var("w") @@ -917,6 +916,43 @@ def test_conv2d_transpose_nhwc_run(): tvm.testing.assert_allclose(op_res1.numpy(), ref_res, rtol=1e-5, atol=1e-5) +@tvm.testing.uses_gpu +def test_conv2d_transpose_nhwc_cudnn(): + if not cudnn.exists(): + return + + dshape_nhwc = (1, 18, 18, 3) + kshape_ihwo = (3, 3, 3, 10) + x = relay.var("x", shape=dshape_nhwc) + w = relay.var("w", shape=kshape_ihwo) + + y = relay.nn.conv2d_transpose( + x, + w, + channels=10, + kernel_size=(3, 3), + strides=(2, 2), + padding=(1, 1), + output_padding=(1, 1), + data_layout="NHWC", + kernel_layout="IHWO", + ) + func = relay.Function([x, w], y) + dtype = "float32" + data = np.random.uniform(size=dshape_nhwc).astype(dtype) + kernel = np.random.uniform(size=kshape_ihwo).astype(dtype) + + ref_res = tvm.topi.testing.conv2d_transpose_nhwc_python( + data, np.transpose(kernel, [1, 2, 3, 0]), "HWOI", 2, 1, output_padding=(1, 1) + ) + + target = "cuda -libs=cudnn" + dev = tvm.cuda(0) + + op_res1 = relay.create_executor("graph", device=dev, target=target).evaluate(func)(data, kernel) + tvm.testing.assert_allclose(op_res1.numpy(), ref_res, rtol=1e-5, atol=1e-5) + + @tvm.testing.uses_gpu def test_conv1d_transpose_ncw_run(): dshape = (1, 3, 18)