-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheval.py
285 lines (203 loc) · 11.9 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import sys
# sys.path.append("..")
import os
import fire
import ml_collections
from functools import partial
# from jax.config import config
# config.update("jax_enable_x64", True)
import jax
from absl import logging
import absl
import tensorflow as tf
tf.config.set_visible_devices([], 'GPU')
from dataloader import get_dataset, configure_dataloader
# from lib.dataset.dataloader import get_dataset, configure_dataloader
# from lib.models.utils import create_model
# from lib.datadistillation.utils import save_dnfr_image, save_proto_np
# from lib.datadistillation.frepo import proto_train_and_evaluate, init_proto, ProtoHolder
# from lib.training.utils import create_train_state
# from lib.dataset.augmax import get_aug_by_name
from clu import metric_writers
from collections import namedtuple
# from jax.config import config as fsf
# fsf.update("jax_enable_x64", True)
from models import ResNet18, Conv, AlexNet, VGG11
from augmax import get_aug_by_name
import numpy as np
import jax.numpy as jnp
import algorithms
import optax
import time
import pickle
from flax.training import train_state, checkpoints
import json
def get_config():
# Note that max_lr_factor and l2_regularization is found through grid search.
config = ml_collections.ConfigDict()
config.random_seed = 0
config.train_log = 'train_log'
config.train_img = 'train_img'
config.mixed_precision = False
config.resume = True
config.img_size = None
config.img_channels = None
config.num_prototypes = None
config.train_size = None
config.dataset = ml_collections.ConfigDict()
config.kernel = ml_collections.ConfigDict()
config.online = ml_collections.ConfigDict()
# Dataset
config.dataset.name = 'cifar100' # ['cifar10', 'cifar100', 'mnist', 'fashion_mnist', 'tiny_imagenet']
config.dataset.data_path = 'data/tensorflow_datasets'
config.dataset.zca_path = 'data/zca'
config.dataset.zca_reg = 0.1
# online
config.online.img_size = None
config.online.img_channels = None
config.online.mixed_precision = config.mixed_precision
config.online.optimizer = 'adam'
config.online.learning_rate = 0.0003
config.online.arch = 'dnfrnet'
config.online.output = 'feat_fc'
config.online.width = 128
config.online.normalization = 'identity'
# Kernel
config.kernel.img_size = None
config.kernel.img_channels = None
config.kernel.num_prototypes = None
config.kernel.train_size = None
config.kernel.mixed_precision = config.mixed_precision
config.kernel.resume = config.resume
config.kernel.optimizer = 'lamb'
config.kernel.learning_rate = 0.0003
config.kernel.batch_size = 1024
config.kernel.eval_batch_size = 1000
return config
def main(dataset_name = 'cifar10', data_path=None, zca_path=None, train_log=None, train_img=None, width=128, depth=3, normalization='identity', eval_lr = 0.0001, random_seed=0, message = 'eval_log', output_dir = None, max_cycles = 1000, config_path = None, checkpoint_path = None, save_name = 'eval_result', log_dir = None, eval_arch = 'conv', models_to_test = 5):
# --------------------------------------
# Setup
# --------------------------------------
if output_dir is None:
output_dir = os.path.dirname(checkpoint_path)
if log_dir is None:
log_dir = output_dir
logging.use_absl_handler()
logging.get_absl_handler().use_absl_log_file('{}, {}'.format(int(time.time()), message), './{}/'.format(log_dir))
absl.flags.FLAGS.mark_as_parsed()
logging.set_verbosity('info')
logging.info('\n\n\n{}\n\n\n'.format(message))
config = get_config()
config.random_seed = random_seed
config.train_log = train_log if train_log else 'train_log'
config.train_img = train_img if train_img else 'train_img'
config.dataset.data_path = data_path if data_path else 'data/tensorflow_datasets'
config.dataset.zca_path = zca_path if zca_path else 'data/zca'
config.dataset.name = dataset_name
(ds_train, ds_test), preprocess_op, rev_preprocess_op, proto_scale = get_dataset(config.dataset)
y_transform = lambda y: tf.one_hot(y, config.dataset.num_classes, on_value=1 - 1 / config.dataset.num_classes,
off_value=-1 / config.dataset.num_classes)
ds_train = configure_dataloader(ds_train, batch_size=config.kernel.batch_size, y_transform=y_transform,
train=True, shuffle=True)
ds_test = configure_dataloader(ds_test, batch_size=config.kernel.eval_batch_size, y_transform=y_transform,
train=False, shuffle=False)
num_classes = config.dataset.num_classes
if config.dataset.img_shape[0] in [28, 32]:
depth = 3
elif config.dataset.img_shape[0] == 64:
depth = 4
elif config.dataset.img_shape[0] == 128:
depth = 5
else:
raise Exception('Invalid resolution for the dataset')
loaded_checkpoint = checkpoints.restore_checkpoint(f'./{checkpoint_path}', None)
coreset_images = loaded_checkpoint['ema_average']['x_proto']
coreset_labels = loaded_checkpoint['ema_average']['y_proto']
if eval_arch == 'conv':
model = Conv(use_softplus = False, beta = 20., num_classes = num_classes, width = width, depth = depth, normalization = normalization)
elif eval_arch == 'resnet':
model = ResNet18(output='logit', num_classes=num_classes, pooling='avg', normalization = normalization)
elif eval_arch == 'vgg':
model = VGG11(output='logit', num_classes=num_classes, pooling='avg', normalization = normalization)
elif eval_arch == 'alexnet':
model = AlexNet(output='logit', num_classes=num_classes, pooling='avg')
use_batchnorm = normalization != 'identity'
net_forward_init, net_forward_apply = model.init, model.apply
key = jax.random.PRNGKey(random_seed)
alg_config = ml_collections.ConfigDict()
if config_path is not None:
print(f'loading config from {config_path}')
logging.info(f'loading config from {config_path}')
loaded_dict = json.loads(open('./{}'.format(config_path), 'rb').read())
loaded_dict['direct_batch_sizes'] = tuple(loaded_dict['direct_batch_sizes'])
alg_config = ml_collections.config_dict.ConfigDict(loaded_dict)
print(alg_config)
logging.info(alg_config)
if output_dir is not None:
if not os.path.exists('./{}'.format(output_dir)):
os.makedirs('./{}'.format(output_dir))
with open('./{}/config.txt'.format(output_dir), 'a') as config_file:
config_file.write(repr(alg_config))
key, valid_key = jax.random.split(key)
valid_keys = jax.random.split(valid_key, models_to_test)
batch_size = 256 if coreset_images.shape[0] > 256 else None
aug = get_aug_by_name(alg_config.test_aug, config.dataset.img_shape[0])
eval_l2 = 0.00
num_online_eval_updates = 1000 if coreset_images.shape[0] == 10 else 2000
warmup_steps = 500
learning_rate = eval_lr
warmup_fn = optax.linear_schedule(init_value=0., end_value=learning_rate, transition_steps=warmup_steps)
cosine_fn = optax.cosine_decay_schedule(init_value=learning_rate, alpha=0.01,
decay_steps=max(num_online_eval_updates - warmup_steps, 1))
learning_rate_fn = optax.join_schedules(schedules=[warmup_fn, cosine_fn], boundaries=[warmup_steps])
if alg_config.use_flip:
coreset_images = jnp.concatenate([coreset_images, jnp.flip(coreset_images, -2)], 0)
coreset_labels = jnp.concatenate([coreset_labels, coreset_labels], 0 )
logging.info('no data augmentation')
acc_dict = {}
accs = []
for g in range(models_to_test):
key, aug_key = jax.random.split(key)
new_params = net_forward_init(valid_keys[g], coreset_images)
if not use_batchnorm:
bum = algorithms.TrainStateWithBatchStats.create(apply_fn = net_forward_apply, params = new_params['params'], tx = optax.chain(optax.adam(learning_rate_fn)), batch_stats = None, train_it = 0)
for g in range(num_online_eval_updates//200):
print(f'train checkpoint {(g) * 200} acc {algorithms.eval_on_test_set(bum, ds_test, has_bn = False, centering = False)}')
bum, losses = algorithms.do_training_steps(bum, {'images': coreset_images, 'labels': coreset_labels}, aug_key, n_steps = 500, l2 = eval_l2, has_bn = False, train = False, batch_size = batch_size, max_batch_size = coreset_images.shape[0])
accs.append(algorithms.eval_on_test_set(bum, ds_test, has_bn = False, centering = False))
else:
bum = algorithms.TrainStateWithBatchStats.create(apply_fn = net_forward_apply, params = new_params['params'], tx = optax.chain(optax.adam(learning_rate_fn)), batch_stats = new_params['batch_stats'], train_it = 0)
for g in range(num_online_eval_updates//200):
print(f'train checkpoint {(g) * 200} acc {algorithms.eval_on_test_set(bum, ds_test, has_bn = True, centering = False)}')
bum, losses = algorithms.do_training_steps(bum, {'images': coreset_images, 'labels': coreset_labels}, aug_key, n_steps = 500, l2 = eval_l2, has_bn = True, train = True, batch_size = batch_size, max_batch_size = coreset_images.shape[0])
accs.append(algorithms.eval_on_test_set(bum, ds_test, has_bn = True, centering = False))
print(accs)
logging.info('no data augmentation avg: {:.2f} pm {:.2f}'.format(100 * np.mean(accs), 100 * np.std(accs)))
print('no data augmentation avg: {:.2f} pm {:.2f}'.format(100 * np.mean(accs), 100 * np.std(accs)))
acc_dict['no_DA'] = np.array(accs)
accs = []
logging.info('with data augmentation')
for g in range(models_to_test):
key, aug_key = jax.random.split(key)
new_params = net_forward_init(valid_keys[g], coreset_images)
if not use_batchnorm:
bum = algorithms.TrainStateWithBatchStats.create(apply_fn = net_forward_apply, params = new_params['params'], tx = optax.chain(optax.adam(learning_rate_fn)), batch_stats = None, train_it = 0)
for g in range(num_online_eval_updates//500):
print(f'train checkpoint {(g) * 500} acc {algorithms.eval_on_test_set(bum, ds_test, has_bn = False, centering = False)}')
bum, losses = algorithms.do_training_steps(bum, {'images': coreset_images, 'labels': coreset_labels}, aug_key, n_steps = 500, l2 = eval_l2, has_bn = False, train = False, aug = aug, batch_size = batch_size, max_batch_size = coreset_images.shape[0])
accs.append(algorithms.eval_on_test_set(bum, ds_test, has_bn = False, centering = False))
else:
bum = algorithms.TrainStateWithBatchStats.create(apply_fn = net_forward_apply, params = new_params['params'], tx = optax.chain(optax.adam(learning_rate_fn)), batch_stats = new_params['batch_stats'], train_it = 0)
for g in range(num_online_eval_updates//500):
print(f'train checkpoint {(g) * 500} acc {algorithms.eval_on_test_set(bum, ds_test, has_bn = True, centering = False)}')
bum, losses = algorithms.do_training_steps(bum, {'images': coreset_images, 'labels': coreset_labels}, aug_key, n_steps = 500, l2 = eval_l2, has_bn = True, train = True, aug = aug, batch_size = batch_size, max_batch_size = coreset_images.shape[0])
accs.append(algorithms.eval_on_test_set(bum, ds_test, has_bn = True, centering = False))
print(accs)
logging.info('with data augmentation avg: {:.2f} pm {:.2f}'.format(100 * np.mean(accs), 100 * np.std(accs)))
print('with data augmentation avg: {:.2f} pm {:.2f}'.format(100 * np.mean(accs), 100 * np.std(accs)))
acc_dict['DA'] = np.array(accs)
if output_dir is not None:
pickle.dump(acc_dict, open('./{}/{}.pkl'.format(output_dir, save_name), 'wb'))
if __name__ == '__main__':
tf.config.experimental.set_visible_devices([], 'GPU')
fire.Fire(main)