-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlab2.py
309 lines (293 loc) · 12.9 KB
/
lab2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
## make neural network
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
###################################
from torchvision.datasets import CIFAR10
from torch.utils.data import DataLoader
import torchvision
import torchvision.transforms as transforms
###################################
import os
import argparse
###################################
import time
from tqdm import tqdm
###################################
#############################
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels,kernel_size, stride, padding, c7 = False):
super(ResidualBlock,self).__init__()
self.conv1 = nn.Conv2d(in_channels,out_channels,kernel_size, stride,padding,bias = False)
self.conv2 = nn.Conv2d(out_channels,out_channels,kernel_size, stride=1 ,padding=padding, bias = False)
self.relu = nn.ReLU(out_channels)
self.batchNorm = nn.BatchNorm2d(out_channels)
self.c7 = c7
if stride != 1:
self.down_sample = nn.Conv2d(in_channels,out_channels,kernel_size=(1,1), stride=stride, padding=0, bias = False)
else:
self.down_sample =None
def forward(self,x):
identity = x
out1 = self.conv1(x)
if self.c7== False:
f = self.relu(self.batchNorm(out1))
else:
f = self.relu(out1)
#################
f = self.conv2(f)
#################
if self.down_sample:
identity = self.down_sample(identity)
## should I apply relu and batch-norm here?
#print(f"size of tensors f: {f.size()}, identity: {identity.size()}, out1: {out1.size()}")
h = f+identity
###
if self.c7 == False:
h =self.batchNorm(h)#self.batchNorm(self.relu(h))
ret = self.relu(h) #self.relu(ret)#self.relu(h)
return ret
##############################
class ResNet(nn.Module,):
def __init__(self,c7 = False):
super(ResNet,self).__init__()
### 2 basicblocks per sub group
###
'''
input->[64]
1st block: [64->64],[64,64]
2nd block: [64->128],[128,128] [input,output]
3rd block: [128->256],[256,256]
4th block: [256->,512],[512,512]
'''
self.c7 = c7
#(3,3) -> 3x3
# stride may only impact the input layer for residuals?
self.input_layer = nn.Conv2d(in_channels = 3,out_channels=64,kernel_size=(3,3), stride = 1,padding=1)#ConvBlock()
### has default parmas ^
#print("Resnet-18 model init")
self.block1 = ResidualBlock(in_channels=64,out_channels=64,kernel_size=(3,3),stride=1,padding=1,c7 = c7)
self.block1_b = ResidualBlock(in_channels=64,out_channels=64,kernel_size=(3,3),stride=1,padding=1,c7 = c7)
##############
self.block2 = ResidualBlock(in_channels=64,out_channels=64,kernel_size=(3,3),stride=2,padding=1,c7 = c7)
self.block2_b = ResidualBlock(in_channels=64,out_channels=128,kernel_size=(3,3),stride=2,padding=1,c7 = c7)
##############
self.block3 = ResidualBlock(in_channels=128,out_channels=256,kernel_size=(3,3),stride=2,padding=1,c7 = c7)
self.block3_b = ResidualBlock(in_channels=256,out_channels=256,kernel_size=(3,3),stride=2,padding=1,c7 = c7)
##############
self.block4 = ResidualBlock(in_channels=256,out_channels=512,kernel_size=(3,3),stride=2,padding=1,c7 = c7)
self.block4_b = ResidualBlock(in_channels=512,out_channels=512,kernel_size=(3,3),stride=2,padding=1,c7 = c7)
##############
self.output_layer = nn.Linear(in_features= 512,out_features=10 )
def forward(self,x):
out1 = self.block1(self.input_layer(x))
out1_b = self.block1_b(out1)
#TODO
### need other block for the subgroups
out2 = self.block2(out1_b)
out2_b = self.block2_b(out2)
#TODO
#####################
out3 = self.block3(out2_b)
out3_b = self.block3_b(out3)
#TODO
out4 = self.block4(out3_b)
out4_b = self.block4_b(out4)
#TODO
#print(f"prior to linear layer: {out4_b.size()}")
y = out4_b.view(out4_b.size(0),-1) ## flattening
### is this expected for outputlayer
#print(f"output layer shape:{y.size()}, out4_b shape: {out4_b.size()}")
ret = self.output_layer(y)#out4_b)
return ret
def Main():
'''
Random cropping with size 32x32 and padding 4
Random horizontal flipping with prob 0.5
Normalize each image's RGB with mean (0.4914,0.4822,0.4465)
'''
### might be able to use reference code
print("welcome to the main function")
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--device', default='cpu',type = str, help = "device")
parser.add_argument('--num_workers',default= 2, type= int, help = "dataloader workers")
parser.add_argument('--data_path',default="./data", type= str, help = "data path")
parser.add_argument('--opt', default ='sgd',type = str ,help = "optimzer")
parser.add_argument('--c7', default=False,type= bool,help ="Question c7")
args = parser.parse_args()
device = args.device
#resnet.to(device)
if args.c7:
print("question c7")
model = ResNet(c7= args.c7)
else:
model = ResNet()
model.to(device)
#print(f'device:{device} from main ')
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
##################################
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
##################################
trainset = torchvision.datasets.CIFAR10(
root=args.data_path, train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=128, shuffle=True, num_workers=args.num_workers)
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')
cross_entropy = nn.CrossEntropyLoss()
optimizer = optimizer_selection(model= model, opt = args.opt, lr = args.lr)
### loss same regardless
global epoch_time
epoch_time= 0
global mini_batch_time
mini_batch_time = 0
global io_time
io_time = 0
############################################
for epoch in range(start_epoch, start_epoch+6):
train(model,epoch,cross_entropy,optimizer,device,trainloader)
if epoch == 0:
print("Warm-up epoch.....")
epoch_time= 0
mini_batch_time = 0
io_time = 0
## ignore epoch 0
#epoch_time+= dummy1
#mini_batch_time+= dummy2
#io_time+= dummy3
print(f"Total times for epoch: {epoch_time} sec, mini batch computations: {mini_batch_time} sec, IO: {io_time} sec")
print(f"Average Epoch time:{epoch_time/5}")
print(f"Number of workers: {args.num_workers} sec")
parameters_vs_gradients(model)
def train(model,epoch,criterion,optimizer,device,dataloader):
print('\nEpoch: %d' % epoch)
model.train()#resnet.train()
train_loss = 0
correct = 0
total = 0
progress_bar = tqdm(dataloader, desc=f'Epoch {epoch}', leave=False)
mini_batch_times = []
io_times = []
if device == 'cpu':
epoch_start = time.perf_counter()
for batch_idx, (inputs, targets) in (enumerate(progress_bar)):#enumerate(trainloader):
io_start = time.perf_counter()
inputs, targets = inputs.to(device), targets.to(device)
io_end = time.perf_counter()
optimizer.zero_grad()
outputs = model(inputs)#resnet(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
minibatch_end = time.perf_counter()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar.set_postfix(loss=train_loss / (batch_idx + 1), accuracy=100. * correct / total)
#print(f"\n minibatch :{minibatch_end-io_end}, io: {io_end-io_start}")
mini_batch_times.append(minibatch_end-io_end)
io_times.append(io_end-io_start)
epoch_end = time.perf_counter()
total_epoch = epoch_end-epoch_start
print(f"epoch: {epoch} time:{total_epoch} sec")
avg_mini_batch_time = torch.tensor(mini_batch_times).mean().item()
avg_io_time = torch.tensor(io_times).mean().item()
total_io = torch.tensor(io_times).sum().item()
total_mini_batch = torch.tensor(mini_batch_times).sum().item()
elif device == 'cuda':
torch.cuda.synchronize()## wait for kernels to finish....
epoch_start = time.perf_counter()
for batch_idx, (inputs, targets) in (enumerate(progress_bar)):#enumerate(trainloader):
torch.cuda.synchronize()## wait for kernels to finish....
io_start = time.perf_counter()
inputs, targets = inputs.to(device), targets.to(device)
torch.cuda.synchronize()## wait for kernels to finish....
io_end = time.perf_counter()
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
torch.cuda.synchronize()## wait for kernels to finish....torch.cuda.synchronize()## wait for kernels to finish....
minibatch_end = time.perf_counter()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar.set_postfix(loss=train_loss / (batch_idx + 1), accuracy=100. * correct / total)
mini_batch_times.append(minibatch_end-io_end)
io_times.append(io_end-io_start)
#print(f"\n minibatch :{minibatch_end-io_end}, io: {io_end-io_start}")
torch.cuda.synchronize()## wait for kernels to finish....
epoch_end = time.perf_counter()
total_epoch = epoch_end-epoch_start
print(f"epoch: {epoch} time:{total_epoch} sec")
avg_mini_batch_time = torch.tensor(mini_batch_times).mean().item()
avg_io_time = torch.tensor(io_times).mean().item()
total_io = torch.tensor(io_times).sum().item()
total_mini_batch = torch.tensor(mini_batch_times).sum().item()
else:
print("Probably entered an invalid device i.e. not (cuda/cpu)")
train_loss = 0
correct = 0
total = 1
avg_mini_batch_time = 0
avg_io_time = 0
total_epoch,total_mini_batch,total_io =0,0,0
#######################################################
average_loss = train_loss / len(dataloader)
accuracy = correct / total
print(f'Training Loss: {average_loss:.4f}, Accuracy: {100 * accuracy:.2f}%')
print(f"average mini batch time:{avg_mini_batch_time} sec, average I/O time: {avg_io_time} sec")
print(f"mini batch time:{total_mini_batch} sec, I/O time: {total_io} sec\n")
global epoch_time
epoch_time+= total_epoch
global mini_batch_time
mini_batch_time +=total_mini_batch
global io_time
io_time += total_io
#return total_epoch,total_mini_batch,total_io
def optimizer_selection(model, opt,lr ):
opt = opt.lower()
print(f"opt: {opt} in the selection function")
if opt == "sgd":
ret = optim.SGD(model.parameters(), lr=lr,
momentum=0.9, weight_decay=5e-4, nesterov=False)
elif opt == "nesterov":
ret = optim.SGD(model.parameters(), lr=lr,
momentum=0.9, weight_decay=5e-4,nesterov=True)
elif opt == "adadelta":
ret = optim.Adadelta(model.parameters(), lr=lr,
weight_decay=5e-4)
elif opt == 'adagrad':
ret = optim.Adagrad(model.parameters(), lr=lr,
weight_decay=5e-4)
elif opt == 'adam':
ret = optim.Adam(model.parameters(), lr=lr,
weight_decay=5e-4)
else:
### default sgd case:
ret = optim.SGD(model.parameters(), lr=lr,
momentum=0.9, weight_decay=5e-4)
return ret
def parameters_vs_gradients(model):
print("Finding Gradients vs parameters")
param_count =[p for p in model.parameters()] #len(resnet.parameters())
grad_count = [p for p in model.parameters() if p.requires_grad]
print(f"params: {len(param_count)}, grads: {len(grad_count)}")
epoch_time = 0
mini_batch_time = 0
io_time = 0
if __name__ == "__main__":
Main()