-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
473 lines (368 loc) · 16.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
# -*- coding: utf-8 -*-
from __future__ import print_function, division
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torchvision import datasets, transforms
from util.weight_variation_AutoLR import *
import time
import os
from model_AutoLR import ft_net, ft_net_4_1
from test_embedded import Get_test_results_single
from tensorboard_logger import configure, log_value
import json
import copy
######################################################################
# Options
# --------
parser = argparse.ArgumentParser(description='Training')
parser.add_argument('--gpu_ids', default='0', type=str, help='gpu_ids: e.g. 0 0,1,2 0,2')
parser.add_argument('--name', default='ft_ResNet50', type=str, help='output model name')
parser.add_argument('--batchsize', default=40, type=int, help='batchsize')
parser.add_argument('--dataset', default='CUB-200', type=str, help='dataset')
parser.add_argument('--max_f', default=0.4, type=float, help='max_f')
parser.add_argument('--min_f', default=2, type=float, help='min_f')
opt = parser.parse_args()
str_ids = opt.gpu_ids.split(',')
gpu_ids = []
for str_id in str_ids:
gid = int(str_id)
if gid >= 0:
gpu_ids.append(gid)
if opt.dataset == 'CUB-200':
data_dir = '/home/ro/FG/CUB_RT/pytorch'
elif opt.dataset == 'Cars-196':
data_dir = '/home/ro/FG/STCAR_RT/pytorch'
scale = 1000000
gamma = 0.2
cls_lr = 0.01
thr_score = 0.94
e_drop = 40
e_end = 50
mlast = 3
desired_weva_set = []
min_factor = 2
max_factor = 0.4
conv1_factor = 0.5
strict = False
save_few_epoch = False
dir_name = '/data/ymro/AAAI2021/reproduce'
configure(dir_name)
print(dir_name)
if not os.path.exists(dir_name):
os.mkdir(dir_name)
# gpu_ids[0] = opt.gpu_ids
print(gpu_ids[0])
# set gpu ids
if len(gpu_ids) > 0:
torch.cuda.set_device(gpu_ids[0])
######################################################################
# Load Data
# ---------
#
init_resize = (256,256)
resize = (224, 224)
transform_train_list = [
# transforms.RandomResizedCrop(size=128, scale=(0.75,1.0), ratio=(0.75,1.3333), interpolation=3), #Image.BICUBIC)
transforms.Resize(resize, interpolation=3),
#transforms.RandomCrop(resize),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
transform_val_list = [
transforms.Resize(init_resize, interpolation=3), # Image.BICUBIC
transforms.CenterCrop(resize), # Image.BICUBIC
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
print(transform_train_list)
data_transforms = {
'train': transforms.Compose(transform_train_list),
'test': transforms.Compose(transform_val_list),
}
image_datasets = {}
image_datasets['train'] = datasets.ImageFolder(os.path.join(data_dir, 'train'),
data_transforms['train'])
image_datasets['test'] = datasets.ImageFolder(os.path.join(data_dir, 'test'),
data_transforms['test'])
dataloaders = {}
dataloaders['train'] = torch.utils.data.DataLoader(image_datasets['train'], batch_size=opt.batchsize, shuffle=True, num_workers=8)
dataloaders['test'] = torch.utils.data.DataLoader(image_datasets['test'], batch_size=opt.batchsize, shuffle=False, num_workers=8)
dataset_sizes = {x: len(image_datasets[x]) for x in ['train']}
class_names = image_datasets['train'].classes
use_gpu = torch.cuda.is_available()
inputs, classes = next(iter(dataloaders['train']))
def train_1epoch(phase, modelB, optimizer, epoch, trial):
modelA = copy.deepcopy(modelB)
running_loss = 0.0
running_corrects = 0
for data in dataloaders[phase]:
# get the inputs
inputs, labels = data
# print(inputs.shape)
# wrap them in Variable
if use_gpu:
inputs = Variable(inputs.cuda())
labels = Variable(labels.cuda())
else:
inputs, labels = Variable(inputs), Variable(labels)
# zero the parameter gradients
optimizer.zero_grad()
# forward
f, outputs = modelB(inputs)
_, preds = torch.max(outputs.data, 1)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.data
running_corrects += torch.sum(preds == labels.data)
weva = compute_weight_variation(modelA, modelB)
return modelB, optimizer, weva, running_loss, running_corrects
def weva2index(weva):
weva_index = [weva.index(x) for x in sorted(weva)]
return weva_index
def isSort(weva):
weva_index = weva2index(weva)
score = get_score(weva_index)
return score
def get_score(A):
diff = 0.
for index, element in enumerate(A):
diff += abs(index - element)
return 1.0 - diff / len(A) ** 2 * 2
def adjustLR(optimizer, weva_table, lr_table, score, n_epoch):
now_weva = weva_table[-1][1:-3]
now_lr = lr_table[-1][1:-1]
if len(weva_table) <= 1:
# Here we make desired weight variation(weva)
if n_epoch == 0:
max_weva = max(now_weva)*opt.max_f
min_weva = min(now_weva)*opt.min_f
print('Bound condition of weigh variation are Max: {:.6f} Min: {:.6f}'.format(max_weva,min_weva))
bias = min_weva
interval = (max_weva - min_weva) / (len(now_weva) - 1)
desired_weva = []
for i in range(len(now_weva)):
desired_weva.append(bias + i * interval)
desired_weva_set.append(desired_weva)
target_lr = now_weva[:]
Gvalue = []
for i in range(len(now_lr)):
Gvalue.append(now_weva[i]/now_lr[i])
for i in range(len(target_lr)):
target_lr[i] = (desired_weva[i] - now_weva[i]) /Gvalue[i] + now_lr[i]
target_lr.append(cls_lr)
adjust_lr = target_lr
else:
max_weva = max(now_weva)
min_weva = min(now_weva)
interval = (max_weva - min_weva) / (len(now_weva) - 1)
desired_weva = now_weva[:]
center = int(len(now_weva)/2)
for i in range(center, 0, -1):
if desired_weva[i] < desired_weva[i-1]:
desired_weva[i - 1] = desired_weva[i] - interval
for i in range(center, len(now_weva)-1, 1):
if desired_weva[i] > desired_weva[i + 1]:
desired_weva[i + 1] = desired_weva[i] + interval
desired_weva_set.append(desired_weva)
target_lr = now_weva[:]
Gvalue = []
for i in range(len(now_lr)):
Gvalue.append(now_weva[i]/now_lr[i])
for i in range(len(target_lr)):
target_lr[i] = (desired_weva[i] - now_weva[i]) /Gvalue[i] + now_lr[i]
target_lr.append(cls_lr)
adjust_lr = target_lr
else:
desired_weva = desired_weva_set[-1]
target_lr = now_weva[:]
Gvalue = []
for i in range(len(now_lr)):
Gvalue.append(now_weva[i] / now_lr[i])
for i in range(len(target_lr)):
target_lr[i] = (desired_weva[i] - now_weva[i]) / Gvalue[i] + now_lr[i]
target_lr.append(cls_lr)
adjust_lr = target_lr
return adjust_lr
#hint
def get_lr(optimizer):
lrs = []
for i in range(len(optimizer.param_groups)):
lrs.append(optimizer.param_groups[i]['lr'])
return lrs
def optimizer_binding(optimizer, model, now_lr):
ignored_params = list(map(id, model.model.layer2.parameters())) + list(map(id, model.model.layer3.parameters())) + \
list(map(id, model.model.layer4.parameters())) + list(map(id, model.model.fc.parameters())) \
+ list(map(id, model.classifier.parameters())) + list(map(id, model.model.layer1.parameters()))
base_params = filter(lambda p: id(p) not in ignored_params, model.parameters())
optimizer_try = optim.SGD([
{'params': base_params, 'lr': now_lr[0]},
{'params': model.model.layer1[0].parameters(), 'lr': now_lr[1]},
{'params': model.model.layer1[1].parameters(), 'lr': now_lr[2]},
{'params': model.model.layer1[2].parameters(), 'lr': now_lr[3]},
{'params': model.model.layer2[0].parameters(), 'lr': now_lr[4]},
{'params': model.model.layer2[1].parameters(), 'lr': now_lr[5]},
{'params': model.model.layer2[2].parameters(), 'lr': now_lr[6]},
{'params': model.model.layer2[3].parameters(), 'lr': now_lr[7]},
{'params': model.model.layer3[0].parameters(), 'lr': now_lr[8]},
{'params': model.model.layer3[1].parameters(), 'lr': now_lr[9]},
{'params': model.model.layer3[2].parameters(), 'lr': now_lr[10]},
{'params': model.model.layer3[3].parameters(), 'lr': now_lr[11]},
{'params': model.model.layer3[4].parameters(), 'lr': now_lr[12]},
{'params': model.model.layer3[5].parameters(), 'lr': now_lr[13]},
{'params': model.model.layer4[0].parameters(), 'lr': now_lr[14]},
# {'params': model.model.layer4[1].parameters(), 'lr': now_lr[15]},
# {'params': model.model.layer4[2].parameters(), 'lr': now_lr[16]},
{'params': model.classifier.parameters(), 'lr': now_lr[15]}
], momentum=0.9, weight_decay=5e-4, nesterov=True) # for CUB
return optimizer_try
def train_model(model_pre, thr_score, criterion, optimizer_pre, drop_timing, num_epochs=25):
since = time.time()
phase = 'train'
model_pre.train(True)
weva_success = []
lr_success = []
ntrial_succes = []
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
if not strict :
if epoch >= 1 and thr_score > 0.8:
thr_score = thr_score*0.99
Trial_error = True
trial = 0
weva_table = []
lr_table = []
now_lr = get_lr(optimizer_pre)
while Trial_error:
trial = trial + 1
model_try = copy.deepcopy(model_pre)
optimizer_try = optimizer_binding(optimizer_pre, model_try, now_lr)
model_try, optimizer_try, weva_try, running_loss, running_corrects = train_1epoch(phase, model_try, optimizer_try, epoch, trial)
score = round(isSort(weva_try[1:-mlast]),3)
if score >= thr_score:
Trial_error = False
model_pre = copy.deepcopy(model_try)
if epoch == e_drop - 1:
for i in range(len(now_lr)):
now_lr[i] = now_lr[i] * gamma
optimizer_pre = optimizer_binding(optimizer_try, model_pre, now_lr)
weva_success.append(copy.deepcopy(weva_try))
print_lr = get_lr(optimizer_try)
print_lr = print_lr[1:]
lr_success.append(get_lr(optimizer_try))
ntrial_succes.append(trial)
#save model
if phase == 'train':
save_network(model_pre, epoch)
else :
Trial_error = True
weva_table.append(weva_try)
print_lr = get_lr(optimizer_try)
print_lr = print_lr[1:]
lr_table.append(get_lr(optimizer_try))
now_lr = adjustLR(optimizer_try, weva_table, lr_table, score, epoch)
now_lr.insert(0, now_lr[0]*conv1_factor)
#Print current state
running_corrects = running_corrects.float()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects / dataset_sizes[phase]
print('trial{}, score:{}, {} Loss: {:.8f} Acc: {:.8f}'.format(trial, score,
phase, epoch_loss, epoch_acc))
results = Get_test_results_single(image_datasets['test'], dataloaders['test'], model_try)
weva_try_print = weva_try[1:-3]
weva_try_print.append(weva_try[-1])
epoLfmt = ['{:.6f}']*(len(weva_try_print)-1)
epoLfmt =' '.join(epoLfmt)
values = []
for i in range(len(weva_try_print)-1):
values.append(weva_try_print[i])
epoLfmt = ' WeVa :' + epoLfmt
print(epoLfmt.format(*values))
if Trial_error == True:
de_weva = desired_weva_set[-1]
epoLfmt = ['{:.6f}'] * len(de_weva)
epoLfmt = ' '.join(epoLfmt)
values = []
for i in range(len(de_weva)):
values.append(de_weva[i])
epoLfmt = 'desWeVa :' + epoLfmt
print(epoLfmt.format(*values))
epoLfmt = ['{:.6f}'] * (len(print_lr)-1)
epoLfmt = ' '.join(epoLfmt)
values = []
for i in range(len(print_lr)-1):
values.append(print_lr[i])
epoLfmt = ' LR :' + epoLfmt
print(epoLfmt.format(*values))
print('test accuracy : top-1 {:.4f} top-2 {:.4f} top-4 {:.4f} top-8 {:.4f}'.format(results[0]*100,results[1]*100,results[2]*100,results[3]*100))
if phase == 'train':
log_value('train_loss', epoch_loss, epoch)
log_value('train_acc', epoch_acc, epoch)
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
return model
# Save model
# ---------------------------
def save_network(network, epoch_label):
save_filename = 'net_%s.pth' % epoch_label
save_path = os.path.join(dir_name, save_filename)
torch.save(network.cpu().state_dict(), save_path)
if torch.cuda.is_available:
network.cuda(gpu_ids[0])
def save_network_trial(network, epoch_label, trial):
save_filename = 'net_%s_%s.pth' % (epoch_label, trial)
save_path = os.path.join(dir_name, save_filename)
torch.save(network.cpu().state_dict(), save_path)
if torch.cuda.is_available:
network.cuda(gpu_ids[0])
######################################################################
# Finetuning the convnet
# ----------------------
#
# Load a pretrainied model and reset final fully connected layer.
#
def load_network_path(network, save_path):
network.load_state_dict(torch.load(save_path))
return network
model = ft_net_4_1(len(class_names))
if use_gpu:
model = model.cuda()
criterion = nn.CrossEntropyLoss()
ignored_params = list(map(id, model.model.layer2.parameters())) + list(map(id, model.model.layer3.parameters())) + \
list(map(id, model.model.layer4.parameters())) + list(map(id, model.model.fc.parameters())) \
+ list(map(id, model.classifier.parameters())) + list(map(id, model.model.layer1.parameters()))
base_params = filter(lambda p: id(p) not in ignored_params, model.parameters())
print(base_params)
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD([
{'params': base_params, 'lr': 0.001},
{'params': model.model.layer1[0].parameters(), 'lr': 0.001},
{'params': model.model.layer1[1].parameters(), 'lr': 0.001},
{'params': model.model.layer1[2].parameters(), 'lr': 0.001},
{'params': model.model.layer2[0].parameters(), 'lr': 0.001},
{'params': model.model.layer2[1].parameters(), 'lr': 0.001},
{'params': model.model.layer2[2].parameters(), 'lr': 0.001},
{'params': model.model.layer2[3].parameters(), 'lr': 0.001},
{'params': model.model.layer3[0].parameters(), 'lr': 0.001},
{'params': model.model.layer3[1].parameters(), 'lr': 0.001},
{'params': model.model.layer3[2].parameters(), 'lr': 0.001},
{'params': model.model.layer3[3].parameters(), 'lr': 0.001},
{'params': model.model.layer3[4].parameters(), 'lr': 0.001},
{'params': model.model.layer3[5].parameters(), 'lr': 0.001},
{'params': model.model.layer4[0].parameters(), 'lr': 0.001},
# {'params': model.model.layer4[1].parameters(), 'lr': 0.001},
# {'params': model.model.layer4[2].parameters(), 'lr': 0.001},
{'params': model.classifier.parameters(), 'lr': cls_lr}
], momentum=0.9, weight_decay=5e-4, nesterov=True) #for CUB
if not os.path.isdir(dir_name):
os.mkdir(dir_name)
# save opts
with open('%s/opts.json' % dir_name, 'w') as fp:
json.dump(vars(opt), fp, indent=1)
model = train_model(model, thr_score, criterion, optimizer_ft, e_drop, num_epochs=e_end)