Skip to content

Latest commit

 

History

History
629 lines (437 loc) · 20.5 KB

0518.零钱兑换II.md

File metadata and controls

629 lines (437 loc) · 20.5 KB

参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们受益!

518.零钱兑换II

力扣题目链接

给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。 

示例 1:

  • 输入: amount = 5, coins = [1, 2, 5]
  • 输出: 4

解释: 有四种方式可以凑成总金额:

  • 5=5
  • 5=2+2+1
  • 5=2+1+1+1
  • 5=1+1+1+1+1

示例 2:

  • 输入: amount = 3, coins = [2]
  • 输出: 0
  • 解释: 只用面额2的硬币不能凑成总金额3。

示例 3:

  • 输入: amount = 10, coins = [10]
  • 输出: 1

注意,你可以假设:

  • 0 <= amount (总金额) <= 5000
  • 1 <= coin (硬币面额) <= 5000
  • 硬币种类不超过 500 种
  • 结果符合 32 位符号整数

算法公开课

《代码随想录》算法视频公开课装满背包有多少种方法?组合与排列有讲究!| LeetCode:518.零钱兑换II,相信结合视频再看本篇题解,更有助于大家对本题的理解

二维dp讲解

如果大家认真做完:分割等和子集最后一块石头的重量II目标和

应该会知道类似这种题目:给出一个总数,一些物品,问能否凑成这个总数。

这是典型的背包问题!

本题求的是装满这个背包的物品组合数是多少。

因为每一种面额的硬币有无限个,所以这是完全背包。

对完全背包还不了解的同学,可以看这篇:完全背包理论基础

但本题和纯完全背包不一样,纯完全背包是凑成背包最大价值是多少,而本题是要求凑成总金额的物品组合个数!

注意题目描述中是凑成总金额的硬币组合数,为什么强调是组合数呢?

例如示例一:

5 = 2 + 2 + 1

5 = 2 + 1 + 2

这是一种组合,都是 2 2 1。

如果问的是排列数,那么上面就是两种排列了。

组合不强调元素之间的顺序,排列强调元素之间的顺序。 其实这一点我们在讲解回溯算法专题的时候就讲过。

那我为什么要介绍这些呢,因为这和下文讲解遍历顺序息息相关!

本题其实与我们讲过 494. 目标和 十分类似。

494. 目标和 求的是装满背包有多少种方法,而本题是求装满背包有多少种组合。

这有啥区别?

求装满背包有几种方法其实就是求组合数。 不过 494. 目标和 是 01背包,即每一类物品只有一个。

以下动规五部曲:

1、确定dp数组以及下标的含义

定义二维dp数值 dp[i][j]:使用 下标为[0, i]的coins[i]能够凑满j(包括j)这么大容量的包,有dp[i][j]种组合方法。

很多录友也会疑惑,凭什么上来就定义 dp数组,思考过程是什么样的, 这个思考过程我在 01背包理论基础(二维数组) 中的 “确定dp数组以及下标的含义” 有详细讲解。

强烈建议按照代码随想录的顺序学习,否则可能看不懂我的讲解

2、确定递推公式

注意: 这里的公式推导,与之前讲解过的 494. 目标和完全背包理论基础 有极大重复,所以我不在重复讲解原理,而是只讲解区别。

我们再回顾一下,01背包理论基础,中二维DP数组的递推公式为:

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])

完全背包理论基础 详细讲解了完全背包二维DP数组的递推公式为:

dp[i][j] = max(dp[i - 1][j], dp[i][j - weight[i]] + value[i])

看去完全背包 和 01背包的差别在哪里?

在于01背包是 dp[i - 1][j - weight[i]] + value[i] ,完全背包是 dp[i][j - weight[i]] + value[i])

主要原因就是 完全背包单类物品有无限个。

具体原因我在 完全背包理论基础(二维) 的 「确定递推公式」有详细讲解,如果大家忘了,再回顾一下。

我上面有说过,本题和 494. 目标和 是一样的,唯一区别就是 494. 目标和 是 01背包,本题是完全背包。

494. 目标和中详解讲解了装满背包有几种方法,二维DP数组的递推公式: dp[i][j] = dp[i - 1][j] + dp[i - 1][j - nums[i]]

所以本题递推公式:dp[i][j] = dp[i - 1][j] + dp[i][j - nums[i]] ,区别依然是 dp[i - 1][j - nums[i]]dp[i][j - nums[i]]

这个 ‘所以’ 我省略了很多推导的内容,因为这些内容在 494. 目标和完全背包理论基础 都详细讲过。

这里不再重复讲解。

大家主要疑惑点

1、 dp[i][j] = dp[i - 1][j] + dp[i][j - nums[i]] 这个递归公式框架怎么来的,在 494. 目标和 有详细讲解。

2、为什么是 dp[i][j - nums[i]] 而不是 dp[i - 1][j - nums[i]] ,在完全背包理论基础(二维) 有详细讲解

3. dp数组如何初始化

那么二维数组的最上行 和 最左列一定要初始化,这是递推公式推导的基础,如图红色部分:

这里首先要关注的就是 dp[0][0] 应该是多少?

背包空间为0,装满「物品0」 的组合数有多少呢?

应该是 0 个, 但如果 「物品0」 的 数值就是0呢? 岂不是可以有无限个0 组合 和为0!

题目描述中说了1 <= coins.length <= 300 ,所以不用考虑 物品数值为0的情况。

那么最上行dp[0][j] 如何初始化呢?

dp[0][j]的含义:用「物品0」(即coins[0]) 装满 背包容量为j的背包,有几种组合方法。 (如果看不懂dp数组的含义,建议先学习494. 目标和

如果 j 可以整除 物品0,那么装满背包就有1种组合方法。

初始化代码:

for (int j = 0; j <= bagSize; j++) {
    if (j % coins[0] == 0) dp[0][j] = 1;
}

最左列如何初始化呢?

dp[i][0] 的含义:用物品i(即coins[i]) 装满容量为0的背包 有几种组合方法。

都有一种方法,即不装。

所以 dp[i][0] 都初始化为1

4. 确定遍历顺序

二维DP数组的完全背包的两个for循环先后顺序是无所谓的。

先遍历背包,还是先遍历物品都是可以的。

原理和 01背包理论基础(二维数组) 中的 「遍历顺序」是一样的,都是因为 两个for循环的先后顺序不影响 递推公式 所需要的数值。

具体分析过程看 01背包理论基础(二维数组) 中的 「遍历顺序」

5. 打印DP数组

以amount为5,coins为:[2,3,5] 为例:

dp数组应该是这样的:

1 0 1 0 1 0
1 0 1 1 1 1
1 0 1 1 1 2

代码实现:

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        int bagSize = amount;

        vector<vector<uint64_t>> dp(coins.size(), vector<uint64_t>(bagSize + 1, 0));

        // 初始化最上行
        for (int j = 0; j <= bagSize; j++) {
            if (j % coins[0] == 0) dp[0][j] = 1;
        }
        // 初始化最左列
        for (int i = 0; i < coins.size(); i++) {
            dp[i][0] = 1;
        }
        // 以下遍历顺序行列可以颠倒
        for (int i = 1; i < coins.size(); i++) { // 行,遍历物品
            for (int j = 0; j <= bagSize; j++) { // 列,遍历背包
                if (coins[i] > j) dp[i][j] = dp[i - 1][j]; 
                else dp[i][j] = dp[i - 1][j] +  dp[i][j - coins[i]];
            }
        }
        return dp[coins.size() - 1][bagSize];
    }
};

一维dp讲解

1、确定dp数组以及下标的含义

dp[j]:凑成总金额j的货币组合数为dp[j]

2、确定递推公式

本题 二维dp 递推公式: dp[i][j] = dp[i - 1][j] + dp[i][j - coins[i]]

压缩成一维:dp[j] += dp[j - coins[i]]

这个递推公式大家应该不陌生了,我在讲解01背包题目的时候在这篇494. 目标和中就讲解了,求装满背包有几种方法,公式都是:dp[j] += dp[j - nums[i]]

3. dp数组如何初始化

装满背包容量为0 的方法是1,即不放任何物品,dp[0] = 1

4. 确定遍历顺序

本题中我们是外层for循环遍历物品(钱币),内层for遍历背包(金钱总额),还是外层for遍历背包(金钱总额),内层for循环遍历物品(钱币)呢?

我在完全背包(一维DP)中讲解了完全背包的两个for循环的先后顺序都是可以的。

但本题就不行了!

因为纯完全背包求得装满背包的最大价值是多少,和凑成总和的元素有没有顺序没关系,即:有顺序也行,没有顺序也行!

而本题要求凑成总和的组合数,元素之间明确要求没有顺序。

所以纯完全背包是能凑成总和就行,不用管怎么凑的。

本题是求凑出来的方案个数,且每个方案个数是组合数。

那么本题,两个for循环的先后顺序可就有说法了。

我们先来看 外层for循环遍历物品(钱币),内层for遍历背包(金钱总额)的情况。

代码如下:

for (int i = 0; i < coins.size(); i++) { // 遍历物品
    for (int j = coins[i]; j <= amount; j++) { // 遍历背包容量
        dp[j] += dp[j - coins[i]];
    }
}

假设:coins[0] = 1,coins[1] = 5。

那么就是先把1加入计算,然后再把5加入计算,得到的方法数量只有{1, 5}这种情况。而不会出现{5, 1}的情况。

所以这种遍历顺序中dp[j]里计算的是组合数!

如果把两个for交换顺序,代码如下:

for (int j = 0; j <= amount; j++) { // 遍历背包容量
    for (int i = 0; i < coins.size(); i++) { // 遍历物品
        if (j - coins[i] >= 0) dp[j] += dp[j - coins[i]];
    }
}

背包容量的每一个值,都是经过 1 和 5 的计算,包含了{1, 5} 和 {5, 1}两种情况。

此时dp[j]里算出来的就是排列数!

可能这里很多同学还不是很理解,建议动手把这两种方案的dp数组数值变化打印出来,对比看一看!(实践出真知)

5. 举例推导dp数组

输入: amount = 5, coins = [1, 2, 5] ,dp状态图如下:

518.零钱兑换II

最后红色框dp[amount]为最终结果。

以上分析完毕,C++代码如下:

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        vector<uint64_t> dp(amount + 1, 0); // 防止相加数据超int
        dp[0] = 1; // 只有一种方式达到0
        for (int i = 0; i < coins.size(); i++) { // 遍历物品
            for (int j = coins[i]; j <= amount; j++) { // 遍历背包
                dp[j] += dp[j - coins[i]];
            }
        }
        return dp[amount]; // 返回组合数
    }
};

C++测试用例有两个数相加超过int的数据,所以需要在if里加上dp[i] < INT_MAX - dp[i - num]。

  • 时间复杂度: O(mn),其中 m 是amount,n 是 coins 的长度
  • 空间复杂度: O(m)

为了防止相加的数据 超int 也可以这么写:

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        vector<int> dp(amount + 1, 0);
        dp[0] = 1; // 只有一种方式达到0
        for (int i = 0; i < coins.size(); i++) { // 遍历物品
            for (int j = coins[i]; j <= amount; j++) { // 遍历背包
                if (dp[j] < INT_MAX - dp[j - coins[i]]) { //防止相加数据超int
                    dp[j] += dp[j - coins[i]];
                }
            }
        }
        return dp[amount]; // 返回组合数
    }
};

总结

本题我们从 二维 分析到 一维。

大家在刚开始学习的时候,从二维开始学习 容易理解。

之后,推荐大家直接掌握一维的写法,熟练后更容易写出来。

本题中,二维dp主要是就要 想清楚和我们之前讲解的 01背包理论基础494. 目标和完全背包理论基础 联系与区别。

这也是代码随想录安排刷题顺序的精髓所在。

本题的一维dp中,难点在于理解便利顺序。

在求装满背包有几种方案的时候,认清遍历顺序是非常关键的。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

可能说到排列数录友们已经有点懵了,后面我还会安排求排列数的题目,到时候在对比一下,大家就会发现神奇所在!

其他语言版本

Java:

class Solution {
    public int change(int amount, int[] coins) {
        //递推表达式
        int[] dp = new int[amount + 1];
        //初始化dp数组,表示金额为0时只有一种情况,也就是什么都不装
        dp[0] = 1;
        for (int i = 0; i < coins.length; i++) {
            for (int j = coins[i]; j <= amount; j++) {
                dp[j] += dp[j - coins[i]];
            }
        }
        return dp[amount];
    }
}
// 二维dp数组版本,方便理解
class Solution {
    public int change(int amount, int[] coins) {
        int[][] dp = new int[coins.length][amount+1];

        // 初始化边界值
        for(int i = 0; i < coins.length; i++){
            // 第一列的初始值为1
            dp[i][0] = 1;
        }
        for(int j = coins[0]; j <= amount; j++){
            // 初始化第一行
            dp[0][j] += dp[0][j-coins[0]];
        }
        
        for(int i = 1; i < coins.length; i++){
            for(int j = 1; j <= amount; j++){
                if(j < coins[i]) dp[i][j] = dp[i-1][j];
                else dp[i][j] = dp[i][j-coins[i]] + dp[i-1][j];
            }
        }

        return dp[coins.length-1][amount];
    }
}

Python:

class Solution:
    def change(self, amount: int, coins: List[int]) -> int:
        dp = [0]*(amount + 1)
        dp[0] = 1
        # 遍历物品
        for i in range(len(coins)):
            # 遍历背包
            for j in range(coins[i], amount + 1):
                dp[j] += dp[j - coins[i]]
        return dp[amount]

Go:

一维dp

func change(amount int, coins []int) int {
	// 定义dp数组
	dp := make([]int, amount+1)
	// 初始化,0大小的背包, 当然是不装任何东西了, 就是1种方法
	dp[0]  = 1
	// 遍历顺序
	// 遍历物品
	for i := 0 ;i < len(coins);i++ {
		// 遍历背包
		for j:= coins[i] ; j <= amount ;j++ {
			// 推导公式
			dp[j] += dp[j-coins[i]]
		}
	}
	return dp[amount]
}

二维dp

func change(amount int, coins []int) int {
    dp := make([][]int, len(coins))
    for i := range dp {
        dp[i] = make([]int, amount + 1)
        dp[i][0] = 1
    }
    for j := coins[0]; j <= amount; j++ {
        dp[0][j] += dp[0][j-coins[0]]
    }
    for i := 1; i < len(coins); i++ {
        for j := 1; j <= amount; j++ {
            if j < coins[i] {
                dp[i][j] = dp[i-1][j]
            } else {
                dp[i][j] = dp[i][j-coins[i]] + dp[i-1][j]
            }
        }
    }
    return dp[len(coins)-1][amount]
}

Rust:

impl Solution {
    pub fn change(amount: i32, coins: Vec<i32>) -> i32 {
        let amount = amount as usize;
        let mut dp = vec![0; amount + 1];
        dp[0] = 1;
        for coin in coins {
            for j in coin as usize..=amount {
                dp[j] += dp[j - coin as usize];
            }
        }
        dp[amount]
    }
}

JavaScript:

const change = (amount, coins) => {
    let dp = Array(amount + 1).fill(0);
    dp[0] = 1;

    for(let i =0; i < coins.length; i++) {
        for(let j = coins[i]; j <= amount; j++) {
            dp[j] += dp[j - coins[i]];
        }
    }

    return dp[amount];
}

TypeScript:

function change(amount: number, coins: number[]): number {
    const dp: number[] = new Array(amount + 1).fill(0);
    dp[0] = 1;
    for (let i = 0, length = coins.length; i < length; i++) {
        for (let j = coins[i]; j <= amount; j++) {
            dp[j] += dp[j - coins[i]];
        }
    }
    return dp[amount];
};

Scala:

object Solution {
  def change(amount: Int, coins: Array[Int]): Int = {
    var dp = new Array[Int](amount + 1)
    dp(0) = 1
    for (i <- 0 until coins.length) {
      for (j <- coins(i) to amount) {
        dp(j) += dp(j - coins(i))
      }
    }
    dp(amount)
  }
}

C

int change(int amount, int* coins, int coinsSize) {
    int dp[amount + 1];
    memset(dp, 0, sizeof (dp));
    dp[0] = 1;
    // 遍历物品
    for(int i = 0; i < coinsSize; i++){
        // 遍历背包
        for(int j = coins[i]; j <= amount; j++){
            dp[j] += dp[j - coins[i]];
        }
    }
    return dp[amount];
}

C#

public class Solution
{
    public int Change(int amount, int[] coins)
    {
        int[] dp = new int[amount + 1];
        dp[0] = 1;
        for (int i = 0; i < coins.Length; i++)
        {
            for (int j = coins[i]; j <= amount; j++)
            {
                if (j >= coins[i])
                    dp[j] += dp[j - coins[i]];
            }
        }
        return dp[amount];
    }
}


回归本题,动规五步曲来分析如下:

  1. 确定dp数组以及下标的含义

dp[j]:凑成总金额j的货币组合数为dp[j]

  1. 确定递推公式

dp[j] 就是所有的dp[j - coins[i]](考虑coins[i]的情况)相加。

所以递推公式:dp[j] += dp[j - coins[i]];

这个递推公式大家应该不陌生了,我在讲解01背包题目的时候在这篇494. 目标和中就讲解了,求装满背包有几种方法,公式都是:dp[j] += dp[j - nums[i]];

  1. dp数组如何初始化

首先dp[0]一定要为1,dp[0] = 1是 递归公式的基础。如果dp[0] = 0 的话,后面所有推导出来的值都是0了。

那么 dp[0] = 1 有没有含义,其实既可以说 凑成总金额0的货币组合数为1,也可以说 凑成总金额0的货币组合数为0,好像都没有毛病。

但题目描述中,也没明确说 amount = 0 的情况,结果应该是多少。

这里我认为题目描述还是要说明一下,因为后台测试数据是默认,amount = 0 的情况,组合数为1的。

下标非0的dp[j]初始化为0,这样累计加dp[j - coins[i]]的时候才不会影响真正的dp[j]

dp[0]=1还说明了一种情况:如果正好选了coins[i]后,也就是j-coins[i] == 0的情况表示这个硬币刚好能选,此时dp[0]为1表示只选coins[i]存在这样的一种选法。