-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDataset.py
360 lines (287 loc) · 15.4 KB
/
Dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
'''
@Date : 12/09/2019
@Author: Zhihan Zhang
@mail : [email protected]
@homepage: ytyz1307zzh.github.io
'''
import torch
import json
import os
import time
import numpy as np
from typing import List, Dict
from Constants import *
from utils import *
class ProparaDataset(torch.utils.data.Dataset):
def __init__(self, data_path: str, opt, tokenizer, is_test: bool):
super(ProparaDataset, self).__init__()
print('[INFO] Starting load...')
print(f'[INFO] Load data from {data_path}')
start_time = time.time()
self.dataset = json.load(open(data_path, 'r', encoding='utf-8'))
self.tokenizer = tokenizer
self.cpnet_struc_input = opt.cpnet_struc_input
self.cpnet = self.read_cpnet(opt.cpnet_path)
self.verb_dict = json.load(open(opt.state_verb, 'r', encoding='utf-8'))
self.state2idx = state2idx
self.idx2state = idx2state
self.is_test = is_test
print(f'[INFO] {len(self.dataset)} instances of data loaded. Time Elapse: {time.time() - start_time}s')
def __len__(self):
return len(self.dataset)
def read_cpnet(self, cpnet_path: str):
"""
Read the retrieved ConceptNet triples for each instance.
"""
cpnet = json.load(open(cpnet_path, 'r', encoding='utf-8'))
cpnet_dict = {}
for instance in cpnet:
para_id = instance['id']
entity = instance['entity']
cpnet_triples = instance['cpnet']
cpnet_sents = []
for triple in cpnet_triples:
fields = triple.split(', ')
assert len(fields) == 11 or len(fields) == 13
sentence = fields[10]
sent_tokens = self.tokenizer.tokenize(sentence)
if self.cpnet_struc_input:
subj = ' '.join(fields[2].strip().split('_'))
obj = ' '.join(fields[5].strip().split('_'))
subj_tokens = self.tokenizer.tokenize(subj)
obj_tokens = self.tokenizer.tokenize(obj)
subj_len = len(subj_tokens)
obj_len = len(obj_tokens)
total_len = len(sent_tokens)
rel_tokens = sent_tokens[subj_len:(total_len - obj_len)]
final_sent_tokens = [self.tokenizer.cls_token] + subj_tokens + [self.tokenizer.sep_token] + \
rel_tokens + [self.tokenizer.sep_token] + obj_tokens + [self.tokenizer.sep_token]
else:
final_sent_tokens = [self.tokenizer.cls_token] + sent_tokens + [self.tokenizer.sep_token]
cpnet_sents.append(' '.join(final_sent_tokens))
cpnet_dict[f'{para_id}-{entity}'] = cpnet_sents
return cpnet_dict
def convert_wordmask_to_subwordmask(self, mask, offset_map):
"""
Map the word indices in 'mask' to subword indices
"""
num_subword = len(offset_map)
return [1 if mask[offset_map[i]] == 1 else 0 for i in range(num_subword)]
def get_word_mask(self, mention_idx: List[int], offset_map: List[int], para_len: int) -> List[int]:
"""
Given a list of mention positions of the entity/verb/location in a paragraph,
compute the mask of it.
"""
word_mask = [1 if i in mention_idx else 0 for i in range(para_len)]
subword_mask = self.convert_wordmask_to_subwordmask(mask=word_mask, offset_map=offset_map)
# prepare positions for <CLS> & <SEP>
subword_mask = [0] + subword_mask + [0]
return subword_mask
def get_sentence_mention(self, sentence_list: List, para_len: int):
"""
Get the indexes of a given sentence.
"""
sentence_mentions = []
sentence_lengths = [x['total_tokens'] for x in sentence_list]
assert sum(sentence_lengths) == para_len
prev_tokens = 0
for length in sentence_lengths:
mention_idx = [idx for idx in range(prev_tokens, prev_tokens + length)]
sentence_mentions.append(mention_idx)
prev_tokens += length
return sentence_mentions
def __getitem__(self, index: int):
instance = self.dataset[index]
entity_name = instance['entity'] # used in the evaluation process
para_id = instance['id'] # used in the evaluation process
total_words = instance['total_tokens'] # used in compute mask vector
total_sents = instance['total_sents']
total_loc_cands = instance['total_loc_candidates']
loc_cand_list = instance['loc_cand_list']
loc_cand_list = ['?'] + loc_cand_list
paragraph = instance['paragraph']
assert len(paragraph.strip().split()) == total_words
tokens = self.tokenizer.tokenize(paragraph)
if isinstance(self.tokenizer, BertTokenizer):
offset_map = bert_subword_map(origin_tokens=paragraph.strip().split(), tokens=tokens)
else:
raise ValueError(f'Did not provide mapping function for tokenizer {type(self.tokenizer)}')
metadata = {'para_id': para_id,
'entity': entity_name,
'total_subwords': len(tokens)+2, # subwords + <CLS> + <SEP>
'total_sents': total_sents,
'total_loc_cands': total_loc_cands,
'loc_cand_list': loc_cand_list,
'raw_gold_loc': instance['gold_loc_seq']
}
gold_state_seq = torch.IntTensor([self.state2idx[label] for label in instance['gold_state_seq']])
loc2idx = {candidate: idx for idx, candidate in enumerate(loc_cand_list)}
loc2idx['-'] = NIL_LOC
# note that the loc_cand_list in exactly "idx2loc" (excluding '?' and '-')
# for train and dev sets, all gold locations should have been included in candidate set
# for test set, the gold location may not in the candidate set
gold_loc_seq = torch.IntTensor([loc2idx[loc] if loc in loc2idx else UNK_LOC
for loc in instance['gold_loc_seq']])
assert gold_loc_seq.size(-1) == gold_state_seq.size(-1) + 1
sentence_list = instance['sentence_list']
sentences = [x['sentence'] for x in sentence_list]
assert total_sents == len(sentence_list)
sentence_mention = self.get_sentence_mention(sentence_list, total_words)
# (num_sent, num_tokens)
sentence_mask_list = torch.IntTensor([self.get_word_mask(sentence_mention[i], offset_map, total_words)
for i in range(len(sentence_mention))])
# (num_sent, num_tokens)
entity_mask_list = torch.IntTensor([self.get_word_mask(sent['entity_mention'], offset_map, total_words)
for sent in sentence_list])
# (num_sent, num_tokens)
verb_mask_list = torch.IntTensor([self.get_word_mask(sent['verb_mention'], offset_map, total_words)
for sent in sentence_list])
# (num_cand, num_sent, num_tokens)
loc_mask_list = torch.IntTensor([[self.get_word_mask(sent['loc_mention_list'][idx], offset_map, total_words)
for sent in sentence_list] for idx in range(total_loc_cands)])
# add an empty mask vector for location 0
empty_mask = torch.zeros((total_loc_cands, 1, loc_mask_list.size(-1)), dtype=torch.int)
loc_mask_list = torch.cat([empty_mask, loc_mask_list], dim=1)
cpnet_triples = self.cpnet[f'{para_id}-{entity_name}']
# (num_sents, num_cands)
state_rel_labels, loc_rel_labels = find_relevant_triple(gold_loc_seq=instance['gold_loc_seq'],
gold_state_seq=instance['gold_state_seq'],
verb_dict=self.verb_dict,
cpnet_triples=cpnet_triples)
sample = {'metadata': metadata,
'paragraph': paragraph,
'sentences': sentences,
'gold_loc_seq': gold_loc_seq,
'gold_state_seq': gold_state_seq,
'sentence_mask': sentence_mask_list,
'entity_mask': entity_mask_list,
'verb_mask': verb_mask_list,
'loc_mask': loc_mask_list,
'cpnet': cpnet_triples,
'state_rel_labels': state_rel_labels,
'loc_rel_labels': loc_rel_labels
}
return sample
# For paragraphs, we pad them to the max number of tokens in a batch
# For sentences, we pad them to the max number of sentences in a batch
# For location candidates, we pad them to the max number of location candidates in a batch
class Collate:
"""
A variant of callate_fn that pads according to the longest sequence in
a batch of sequences, turn List[Dict] -> Dict[List]
"""
def __init__(self):
pass
def __call__(self, batch):
return self.collate(batch)
def collate(self, batch: List[Dict]):
"""
Convert a list of dict instances to a dict of batched tensors
args:
batch - list of instances constructed by dataset
reutrn:
batch - a dict, contains lists of data fields
"""
# find max number of sentences & tokens
max_sents = max([inst['metadata']['total_sents'] for inst in batch])
max_tokens = max([inst['metadata']['total_subwords'] for inst in batch])
max_cands = max([inst['metadata']['total_loc_cands'] for inst in batch])
max_cpnet = max([len(inst['cpnet']) for inst in batch])
batch_size = len(batch)
# pad according to max_len
batch = list(map(lambda x: self.pad_instance(x, max_sents = max_sents,
max_tokens = max_tokens,
max_cands = max_cands,
max_cpnet = max_cpnet), batch))
metadata = list(map(lambda x: x['metadata'], batch))
paragraph = list(map(lambda x: x['paragraph'], batch))
sentences = list(map(lambda x: x['sentences'], batch))
cpnet = list(map(lambda x: x['cpnet'], batch))
gold_loc_seq = torch.stack(list(map(lambda x: x['gold_loc_seq'], batch)))
gold_state_seq = torch.stack(list(map(lambda x: x['gold_state_seq'], batch)))
sentence_mask = torch.stack(list(map(lambda x: x['sentence_mask'], batch)))
entity_mask = torch.stack(list(map(lambda x: x['entity_mask'], batch)))
verb_mask = torch.stack(list(map(lambda x: x['verb_mask'], batch)))
loc_mask = torch.stack(list(map(lambda x: x['loc_mask'], batch)))
state_rel_labels = torch.stack(list(map(lambda x: x['state_rel_labels'], batch)))
loc_rel_labels = torch.stack(list(map(lambda x: x['loc_rel_labels'], batch)))
# check the dimension of the data
assert len(metadata) == len(paragraph) == len(sentences) == len(cpnet) == batch_size
assert gold_state_seq.size() == (batch_size, max_sents)
assert gold_loc_seq.size() == (batch_size, max_sents + 1)
assert sentence_mask.size() == entity_mask.size() == verb_mask.size() == (batch_size, max_sents, max_tokens)
assert loc_mask.size() == (batch_size, max_cands, max_sents + 1, max_tokens)
assert state_rel_labels.size() == (batch_size, max_sents, max_cpnet)
assert loc_rel_labels.size() == (batch_size, max_sents + 1, max_cpnet)
return {'metadata': metadata,
'paragraph': paragraph, # unpadded, 1-dimension
'sentences': sentences, # unpadded, 2-dimension
'gold_loc_seq': gold_loc_seq,
'gold_state_seq': gold_state_seq,
'sentence_mask': sentence_mask,
'entity_mask': entity_mask,
'verb_mask': verb_mask,
'loc_mask': loc_mask,
'cpnet': cpnet,
'state_rel_labels': state_rel_labels,
'loc_rel_labels': loc_rel_labels
}
def pad_instance(self, instance: Dict, max_sents: int, max_tokens: int,
max_cands: int, max_cpnet: int) -> Dict:
"""
Pad the data fields of a certain instance.
args:
instance - instance to pad
max_sents - maximum number of sentences in this batch
max_tokens - maximum number of tokens in this batch
"""
instance['gold_state_seq'] = self.pad_tensor(instance['gold_state_seq'], pad = max_sents, dim = 0, pad_val = PAD_STATE)
instance['gold_loc_seq'] = self.pad_tensor(instance['gold_loc_seq'], pad = max_sents + 1, dim = 0, pad_val = PAD_LOC)
instance['sentence_mask'] = self.pad_mask_list(instance['sentence_mask'], max_sents = max_sents, max_tokens = max_tokens)
instance['entity_mask'] = self.pad_mask_list(instance['entity_mask'], max_sents = max_sents, max_tokens = max_tokens)
instance['verb_mask'] = self.pad_mask_list(instance['verb_mask'], max_sents = max_sents, max_tokens = max_tokens)
instance['loc_mask'] = self.pad_mask_list(instance['loc_mask'], max_sents = max_sents + 1,
max_tokens = max_tokens, max_cands = max_cands)
instance['state_rel_labels'] = self.pad_rel_labels(instance['state_rel_labels'], max_sents = max_sents,
max_cpnet = max_cpnet)
instance['loc_rel_labels'] = self.pad_rel_labels(instance['loc_rel_labels'], max_sents=max_sents + 1,
max_cpnet=max_cpnet)
instance['cpnet'] = self.pad_cpnet(instance['cpnet'], max_num = max_cpnet)
return instance
def pad_mask_list(self, vec: torch.Tensor, max_sents: int, max_tokens: int, max_cands: int = None) -> torch.Tensor:
"""
Pad a tensor of mask list
"""
tmp_vec = self.pad_tensor(vec, pad = max_tokens, dim = -1)
tmp_vec = self.pad_tensor(tmp_vec, pad = max_sents, dim = -2)
if max_cands is not None:
tmp_vec = self.pad_tensor(tmp_vec, pad = max_cands, dim = -3)
return tmp_vec
def pad_rel_labels(self, vec: torch.Tensor, max_sents: int, max_cpnet: int) -> torch.Tensor:
"""
Pad state_rel_labels or loc_rel_labels
"""
tmp_vec = self.pad_tensor(vec, pad = max_cpnet, dim = -1)
tmp_vec = self.pad_tensor(tmp_vec, pad = max_sents, dim = -2)
return tmp_vec
def pad_tensor(self, vec: torch.Tensor, pad: int, dim: int, pad_val: int = 0) -> torch.Tensor:
"""
Pad a tensor on a given dimension to a given size.
args:
vec - tensor to pad
pad - the size to pad to
dim - dimension to pad
return:
a new tensor padded to 'pad' in dimension 'dim'
"""
pad_size = list(vec.size())
pad_size[dim] = pad - vec.size(dim)
pad_vec = torch.zeros(*pad_size, dtype = vec.dtype)
if pad_val != 0:
pad_vec.fill_(pad_val)
return torch.cat([vec, pad_vec], dim = dim)
def pad_cpnet(self, data: List[str], max_num: int):
"""
Pad the cpnet triples to max number.
"""
return data + ['' for _ in range(max_num - len(data))]