-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathevaluation.py
47 lines (35 loc) · 1.91 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import os
import cv2
import numpy as np
from utils import comput_sad_loss, compute_mse_loss
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--pred-dir', type=str, default='./predDIM/', help="pred alpha dir")
parser.add_argument('--label-dir', type=str, default='/export/ccvl12b/qihang/MGMatting/data/Combined_Dataset/Test_set/alpha_copy/', help="GT alpha dir")
parser.add_argument('--trimap-dir', type=str, default='/export/ccvl12b/qihang/MGMatting/data/Combined_Dataset/Test_set/trimaps/', help="trimap dir")
args = parser.parse_args()
mse_loss = []
sad_loss = []
### loss_unknown only consider the unknown regions, i.e. trimap==128, as trimap-based methods do
mse_loss_unknown = []
sad_loss_unknown = []
for img in os.listdir(args.label_dir):
print(img)
pred = cv2.imread(os.path.join(args.pred_dir, img), 0).astype(np.float32)
label = cv2.imread(os.path.join(args.label_dir, img), 0).astype(np.float32)
trimap = cv2.imread(os.path.join(args.trimap_dir, img), 0).astype(np.float32)
mse_loss_unknown_ = compute_mse_loss(pred, label, trimap)
sad_loss_unknown_ = comput_sad_loss(pred, label, trimap)[0]
trimap[...] = 128
mse_loss_ = compute_mse_loss(pred, label, trimap)
sad_loss_ = comput_sad_loss(pred, label, trimap)[0]
print('Whole Image: MSE:', mse_loss_, ' SAD:', sad_loss_)
print('Unknown Region: MSE:', mse_loss_unknown_, ' SAD:', sad_loss_unknown_)
mse_loss_unknown.append(mse_loss_unknown_)
sad_loss_unknown.append(sad_loss_unknown_)
mse_loss.append(mse_loss_)
sad_loss.append(sad_loss_)
print('Average:')
print('Whole Image: MSE:', np.array(mse_loss).mean(), ' SAD:', np.array(sad_loss).mean())
print('Unknown Region: MSE:', np.array(mse_loss_unknown).mean(), ' SAD:', np.array(sad_loss_unknown).mean())