-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathmain.py
105 lines (88 loc) · 4.16 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import os
import toml
import argparse
from pprint import pprint
import torch
from torch.utils.data import DataLoader
import utils
from utils import CONFIG
from trainer import Trainer
from dataloader.image_file import ImageFileTrain, ImageFileTest
from dataloader.data_generator import DataGenerator
from dataloader.prefetcher import Prefetcher
def main():
# Train or Test
if CONFIG.phase.lower() == "train":
# set distributed training
if CONFIG.dist:
CONFIG.gpu = CONFIG.local_rank
torch.cuda.set_device(CONFIG.gpu)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
CONFIG.world_size = torch.distributed.get_world_size()
# Create directories if not exist.
if CONFIG.local_rank == 0:
utils.make_dir(CONFIG.log.logging_path)
utils.make_dir(CONFIG.log.tensorboard_path)
utils.make_dir(CONFIG.log.checkpoint_path)
# Create a logger
logger, tb_logger = utils.get_logger(CONFIG.log.logging_path,
CONFIG.log.tensorboard_path,
logging_level=CONFIG.log.logging_level)
train_image_file = ImageFileTrain(alpha_dir=CONFIG.data.train_alpha,
fg_dir=CONFIG.data.train_fg,
bg_dir=CONFIG.data.train_bg)
test_image_file = ImageFileTest(alpha_dir=CONFIG.data.test_alpha,
merged_dir=CONFIG.data.test_merged,
trimap_dir=CONFIG.data.test_trimap)
train_dataset = DataGenerator(train_image_file, phase='train')
test_dataset = DataGenerator(test_image_file, phase='val')
if CONFIG.dist:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
test_sampler = torch.utils.data.distributed.DistributedSampler(test_dataset)
else:
train_sampler = None
test_sampler = None
train_dataloader = DataLoader(train_dataset,
batch_size=CONFIG.model.batch_size,
shuffle=(train_sampler is None),
num_workers=CONFIG.data.workers,
pin_memory=True,
sampler=train_sampler,
drop_last=True)
train_dataloader = Prefetcher(train_dataloader)
test_dataloader = DataLoader(test_dataset,
batch_size=1,
shuffle=False,
num_workers=CONFIG.data.workers,
sampler=test_sampler,
drop_last=False)
trainer = Trainer(train_dataloader=train_dataloader,
test_dataloader=test_dataloader,
logger=logger,
tb_logger=tb_logger)
trainer.train()
else:
raise NotImplementedError("Unknown Phase: {}".format(CONFIG.phase))
if __name__ == '__main__':
print('Torch Version: ', torch.__version__)
parser = argparse.ArgumentParser()
parser.add_argument('--phase', type=str, default='train')
parser.add_argument('--config', type=str, default='config/gca-dist.toml')
parser.add_argument('--local_rank', type=int, default=0)
# Parse configuration
args = parser.parse_args()
with open(args.config) as f:
utils.load_config(toml.load(f))
# Check if toml config file is loaded
if CONFIG.is_default:
raise ValueError("No .toml config loaded.")
CONFIG.phase = args.phase
CONFIG.log.logging_path = os.path.join(CONFIG.log.logging_path, CONFIG.version)
CONFIG.log.tensorboard_path = os.path.join(CONFIG.log.tensorboard_path, CONFIG.version)
CONFIG.log.checkpoint_path = os.path.join(CONFIG.log.checkpoint_path, CONFIG.version)
if args.local_rank == 0:
print('CONFIG: ')
pprint(CONFIG)
CONFIG.local_rank = args.local_rank
# Train
main()