Skip to content

Latest commit

 

History

History
172 lines (171 loc) · 22.8 KB

list.md

File metadata and controls

172 lines (171 loc) · 22.8 KB
ジャンル github account(敬称略) link title
1 NN一般 takagi https://arxiv.org/abs/1710.09829 Dynamic Routing Between Capsules capsule net
強化学習 @kmiwa https://arxiv.org/abs/1803.04675 Using Grouped Linear Prediction and Accelerated Reinforcement Learning for Online Content Caching
自然言語 チャットボット @nharu1san https://arxiv.org/abs/1612.01627 Sequential Matching Network: A New Architecture for Multi-turn Response Selection in Retrieval-based Chatbots
教育 @kaaztech https://dl.acm.org/doi/10.1145/3027385.3029479 A neural network approach for students' performance prediction
NN一般 活性化 @antimon2 https://arxiv.org/abs/1710.05941 Searching for Activation Functions swish
アノテーション 医療 @exoego https://arxiv.org/abs/1708.06297 Employing Weak Annotations for Medical Image Analysis Problems
量子化 @cohama https://arxiv.org/abs/1511.00363 BinaryConnect: Training Deep Neural Networks with binary weights during propagations
正規化 @melleo1978 https://arxiv.org/abs/1705.08741 Train longer, generalize better: closing the generalization gap in large batch training of neural networks ghost batch normalization
ドメイン適用 @kotamatui http://papers.nips.cc/paper/6963-joint-distribution-optimal-transportation-for-domain-adaptation.pdf Joint distribution optimal transportation for domain adaptation
物体検出 zero_shot @n-kats https://arxiv.org/abs/1803.06049 Zero-Shot Object Detection: Learning to Simultaneously Recognize and Localize Novel Concept
2 自然言語 @nharu1san https://arxiv.org/abs/1802.02614v1 Enhance word representation for out-of-vocabulary on Ubuntu dialogue corpus
敵対的事例 @antimon2 https://arxiv.org/abs/1804.00499 Semantic Adversarial Examples
強化学習 @kmiwa https://arxiv.org/abs/1603.00748 Continuous Deep Q-Learning with Model-based Acceleration
物体検出 @n-kats https://arxiv.org/abs/1712.00960 FSSD: Feature Fusion Single Shot Multibox Detector
工場 sakurai https://ieeexplore.ieee.org/document/7864335 A Generic Deep-Learning-Based Approach for Automated Surface Inspection
3 半教師 @antimon2 https://arxiv.org/abs/1805.09302 Input and Weight Space Smoothing for Semi-supervised Learning
Pruning @cohama https://arxiv.org/abs/1805.11394 A novel channel pruning method for deep neural network compression
GAN 顔 @yunishimura https://www.jstage.jst.go.jp/articleke/advpub/0/advpub_TJSKE-D-17-00085/_pdf/-char/ja Face Image Generation System using Attributes Information with DCGANs
学習率スケジューリング @wkluk-hk https://arxiv.org/abs/1506.01186v6 Cyclical Learning Rates for Training Neural Networks
工場 sakurai http://journals.sagepub.com/doi/pdf/10.1177/1687814018766682 Intelligent defect classification system based on deep learning
3D SLAM @melleo1978 https://arxiv.org/abs/1803.02286 Learning monocular visual odometry with dense 3D mapping from dense 3D flow
強化学習 @kmiwa https://arxiv.org/abs/1804.00379 Recall Traces: Backtracking Models for Efficient Reinforcement Learning
GAN attention @n-kats https://arxiv.org/abs/1805.0831 Self-Attention Generative Adversarial Networks SAGAN
自然言語 文書埋め込み @nharu1san https://arxiv.org/abs/1803.11175 Universal Sentence Encoder
4 トラッキング MOT @wkluk-hk https://arxiv.org/abs/1711.02741 Recurrent Autoregressive Networks for Online Multi-Object Tracking
GAN takagi https://arxiv.org/abs/1702.08431 Boundary-Seeking Generative Adversarial Networks
ライブラリ @cohama https://arxiv.org/abs/1410.0759 cuDNN: Efficient Primitives for Deep Learning cuDNN
キャプション生成 @Denpa92 https://arxiv.org/abs/1806.04510 Dank Learning: Generating Memes Using Deep Neural Networks
自然言語 構文 @nharu1san http://www.aclweb.org/anthology/P15-1162 Deep Unordered Composition Rivals Syntactic Methods for Text Classification
強化学習 関係 @kmiwa https://arxiv.org/abs/1806.01830 Relational Deep Reinforcement Learning
強化学習 @shuuichi https://arxiv.org/abs/1803.07055 Simple random search provides a competitive approachto reinforcement learning
強化学習 @antimon2 https://arxiv.org/abs/1806.00175 Strategic Object Oriented Reinforcement Learning
転移学習 sakurai https://ieeexplore.ieee.org/document/7966162 Transfer Learning for Automated Optical Inspection
GAN 音 @hissanova https://arxiv.org/abs/1802.04208 Synthesizing Audio with Generative Adversarial Networks
GAN @n-kats https://arxiv.org/abs/1709.01118 WESPE: Weakly Supervised Photo Enhancer for Digital Cameras
6 インスタンスセグメンテーション @wkluk-hk https://arxiv.org/abs/1807.05361 Non-local RoIs for Instance Segmentation
フロー系生成モデル @antimon2 https://arxiv.org/abs/1807.03039 Glow: Generative Flow with Invertible 1×1 Convolutions Glow
強化学習 @kmiwa https://arxiv.org/abs/1802.03006 Learning and Querying Fast Generative Models for Reinforcement Learnin
ライブラリ @kencyke http://www.kdd.org/kdd2017/papers/view/tfx-a-tensorflow-based-production-scale-machine-learning-platform TFX: A TensorFlow-Based Production-Scale Machine Learning Platform TFX
NN一般 初期化 @melleo1978 https://arxiv.org/abs/1702.08591 The Shattered Gradients Problem: If resnets are the answer, then what is the question?
画像データセット @yuji38kwmt https://www.arxiv-vanity.com/papers/1805.04687/ BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling BDD100K
グラフ系 @n-kats https://arxiv.org/abs/1806.01261 Relational inductive biases, deep learning, and graph networks GN
強化学習 @kmiwa https://arxiv.org/pdf/1707.06203 Imagination-Augmented Agents for Deep Reinforcement Learning
自然言語データセット @nharu1san https://arxiv.org/abs/1312.3005 One Billion Word Benchmark for Measuring Progress in Statistical Language Modeling
転移学習 sakurai https://arxiv.org/abs/1805.08974 Do Better ImageNet Models Transfer Better ?
7 対話 takagi https://www.jstage.jst.go.jp/article/tjsai/33/1/33_DSH-F/_pdf Engagement Recognition from Listener’s Behaviors in Spoken Dialogue Using a Latent Character Model
蒸留 yasuno http://export.arxiv.org/pdf/1805.04770 Born Again Neural Networks
アノテーション @yuji38kwmt https://arxiv.org/abs/1809.08888 Empirical Methodology for Crowdsourcing Ground Truth
物体検出 @n-kats https://arxiv.org/abs/1711.07240 MegDet: A Large Mini-Batch Object Detector MegDet
軽量モデル @cohama https://arxiv.org/abs/1807.11164 ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design ShuffleNet V2
NN一般 活性化 @antimon2 https://arxiv.org/abs/1810.01829 Weighted Sigmoid Gate Unit for an Activation Function of Deep Neural Network
8 理論 NN一般 初期化 @melleo1978 https://arxiv.org/abs/1806.05393v2 Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
インスタンスセグメンテーション 点群 医療 @wkluk-hk https://arxiv.org/abs/1811.03208 Deep Semantic Instance Segmentation of Tree-like Structures Using Synthetic Data
ライブラリ @antimon2 https://arxiv.org/abs/1810.09868 Automatic Full Compilation of Julia Programs and ML Models to Cloud TPUs
3D @n-kats https://arxiv.org/abs/1804.01654 Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images
軽量モデル @cohama http://openaccess.thecvf.com/content_ECCV_2018/html/Xin_Wang_SkipNet_Learning_Dynamic_ECCV_2018_paper.html SkipNet: Learning Dynamic Routing in Convolutional Networks
画像データセット アノテーション @yuji38kwmt https://arxiv.org/abs/1712.08394 The ParallelEye Dataset: Constructing Large-Scale Artificial Scenes for Traffic Vision Research
神経科学 @nharu1san https://arxiv.org/abs/1811.02923 Universal Spike Classifier
9 量子化 @melleo1978 https://openreview.net/forum?id=ByfPDyrYim Linear Backprop in non-linear networks
異常検知 @devjap https://arxiv.org/abs/1703.05921 Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
アノテーション @yuji38kwmt https://www.researchgate.net/publication/291249011_Crowdsourcing_annotations_for_visual_object_detection Crowdsourcing Annotations for Visual Object Detection
距離 最適輸送 @n-kats https://arxiv.org/abs/1811.02834 Fused Gromov-Wasserstein distance for structured objects: theoretical foundations and mathematical properties
転移学習 sakurai https://arxiv.org/abs/1808.01974 A Survey of Deep Transfer Learning
NN一般 padding @antimon2 https://arxiv.org/abs/1811.11718 Partial Convolution based Padding
軽量モデル NAS @cohama https://arxiv.org/abs/1812.02975 ShuffleNASNets: Efficient CNN models through modified Efficient Neural Architecture Search
10 理論 正規化 @melleo1978 https://arxiv.org/abs/1805.11604v3 How Does Batch Normalization Help Optimization?
対話 takagi http://www.cs.toronto.edu/face2face A face to face neural conversation model
蒸留 転移学習 sakurai https://arxiv.org/abs/1503.02531 Distilling the Knowledge in a Neural Network
物体検出 @cohama https://arxiv.org/abs/1804.06215 DetNet: A Backbone network for Object Detection
運転 車線 @yuji38kwmt https://arxiv.org/abs/1806.05984 Ego-Lane Analysis System (ELAS): Dataset and Algorithms
ライブラリ @antimon2 https://arxiv.org/abs/1812.09064 GaussianProcesses.jl: A Nonparametric Bayes package for the Julia Language
3D SLAM @n-kats https://arxiv.org/abs/1811.06152 Depth Prediction Without the Sensors: Leveraging Structure for Unsupervised Learning from Monocular Videos
11 GAN @melleo1978 https://arxiv.org/abs/1812.04948 A Style-Based Generator Architecture for Generative Adversarial Networks StyleGAN
軽量モデル @cohama https://arxiv.org/abs/1901.09615 Convolutional Neural Networks with Layer Reuse
NAS グラフ系 @n-kats https://arxiv.org/abs/1808.07233 Neural Architecture Optimization
時系列 sakurai https://arxiv.org/abs/1811.01533 Transfer learning for time series classification
12 ライブラリ @antimon2 https://arxiv.org/abs/1902.02376 DiffEqFlux.jl — A Julia Library for Neural Differential Equations
自然言語 質問回答 @nharu1san https://arxiv.org/abs/1902.01718 End-to-End Open-Domain Question Answering with BERTserini
軽量モデル @cohama https://arxiv.org/abs/1902.09701 Learning Implicitly Recurrent CNNs Through Parameter Sharing
13 GAN 3D @melleo1978 https://arxiv.org/abs/1904.01326 HoloGAN: Unsupervised learning of 3D representations from natural images HoloGAN
GAN takagi https://arxiv.org/abs/1811.10597v2 GAN Dissection: Visualizing and Understanding Generative Adversarial Networks
3D SLAM @n-kats https://arxiv.org/abs/1904.04998 Depth from Videos in the Wild: Unsupervised Monocular Depth Learning from Unknown Cameras
自然言語 文書分類 @nharu1san https://arxiv.org/abs/arxiv_1904.08398 DocBERT: BERT for Document Classification
物体検出 @cohama https://arxiv.org/abs/1904.01355v3 FCOS: Fully Convolutional One-Stage Object Detection FCOS
時系列 sakurai http://www.lumenai.fr/blog/time-series-aggregation Time series aggregation Comparison of two global averaging approaches
運転 車線 @yuji38kwmt https://arxiv.org/abs/1802.05591 Towards End-to-End Lane Detection: an Instance Segmentation Approach
14 NN一般 初期化 @melleo1978 https://arxiv.org/abs/1901.09321 Fixup Initialization: Residual Learning Without Normalization Fixup
自然言語 @nharu1san https://arxiv.org/abs/1905.05950 BERT Rediscovers the Classical NLP Pipeline
物体検出 @cohama https://arxiv.org/abs/1904.08189 CenterNet: Keypoint Triplets for Object Detection
運転 @yuji38kwmt https://arxiv.org/abs/1904.08980 Exploring the Limitations of Behavior Cloning for Autonomous Driving
インスタンスセグメンテーション @antimon2 https://arxiv.org/abs/1708.02551 Semantic Instance Segmentation with a Discriminative Loss Function
3D @n-kats https://arxiv.org/abs/1812.03828 Occupancy Networks: Learning 3D Reconstruction in Function Space
埋め込み 顔 takagi https://arxiv.org/abs/1811.11283 A Compact Embedding for Facial Expression Similarity
15 半教師 @melleo1978 https://arxiv.org/abs/1904.12848v1 Unsupervised Data Augmentation
強化学習 @Mit-Funa https://deepmind.com/blog/capture-the-flag-science/?utm_source=Deep+Learning+Weekly&utm_campaign=cf75ae36f6-EMAIL_CAMPAIGN_2019_04_24_03_18_COPY_01&utm_medium=email&utm_term=0_384567b42d-cf75ae36f6-73708453 Human-level performance in 3D multiplayer games with populationbased reinforcement learning
半教師 @cohama https://arxiv.org/abs/1905.02249v1 MixMatch: A Holistic Approach to Semi-Supervised Learning MixMatch
自然言語 司法 @nharu1san https://arxiv.org/abs/1906.02059 Neural Legal Judgment Prediction in English
理論 @n-kats https://arxiv.org/abs/1805.08522 Deep learning generalizes because the parameter-function map is biased towards simple functions
16 データオーグメント @melleo1978 https://arxiv.org/abs/1810.12890 DropBlock: A regularization method for convolutional networks
最適化 @Kgm1500 https://arxiv.org/abs/1802.09568 Shampoo: Preconditioned Stochastic Tensor Optimization
画風変換 @n-kats https://arxiv.org/abs/1703.06868 Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization AdaIN
NN一般 @cohama https://arxiv.org/abs/1703.06211 Deformable Convolutional Networks
ライブラリ @antimon2 https://estadistika.github.io//julia/python/packages/knet/flux/tensorflow/machine-learning/deep-learning/2019/06/20/Deep-Learning-Exploring-High-Level-APIs-of-Knet.jl-and-Flux.jl-in-comparison-to-Tensorflow-Keras.html Deep Learning: Exploring High Level APIs of Knet.jl and Flux.jl in comparison to Tensorflow-Keras
強化学習環境 @Mit-Funa https://ai.googleblog.com/2019/06/introducing-google-research-football.html Google Research Football: A Novel Reinforcement Learning Environment
17 最適化 @melleo1978 https://arxiv.org/abs/1905.11286 Stochastic Gradient Methods with Layer-wise Adaptive Moments for Training of Deep Networks NovoGrad
自己教師 optical_flow @n-kats https://arxiv.org/abs/1904.09117 SelFlow: Self-Supervised Learning of Optical Flow
自己教師 トラッキング @cohama https://arxiv.org/abs/1806.09594 Tracking Emerges by Colorizing Videos
18 attention @melleo1978 https://arxiv.org/abs/1906.05909 Stand-Alone Self-Attention in Vision Models
物体検出 @cohama https://arxiv.org/abs/1909.03625 CBNet: A Novel Composite Backbone Network Architecture for Object Detection
グラフ系 物理 @n-kats https://arxiv.org/abs/1909.02487 Ab-Initio Solution of the Many-Electron Schrödinger Equation with Deep Neural Networks FermiNet
ライブラリ @antimon2 https://dl.acm.org/inst_page.cfm?id=60022195 Gen: A General-Purpose Probabilistic Programming System with Programmable Inference
グラフ系 物理 @yuji38kwmt https://arxiv.org/abs/1906.10033 Unifying machine learning and quantum chemistry – a deep neural network for molecular wavefunctions
19 tutorial @FunabikiKeisuke https://arxiv.org/abs/1909.13739 https://www.programiz.com/python-programming
フロー系生成 グラフ系 物理 @n-kats https://arxiv.org/abs/1909.13739 Equivariant Hamiltonian Flows
20 contrastive_learning @melleo1978 https://arxiv.org/abs/1911.05722v2 Momentum Contrast for Unsupervised Visual Representation Learning MoCo
異常検知 @wkluk-hk https://arxiv.org/abs/1802.06222 Efficient GAN-Based Anomaly Detection
自然言語 @nharu1san https://arxiv.org/abs/1910.13461 BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
動画生成 姿勢 @n-kats https://arxiv.org/abs/1910.12713 Few-shot Video-to-Video Synthesis
アノテーション @yuji38kwmt https://arxiv.org/abs/1911.02807 Improving Human Annotation in Single Object Tracking
物体検出 @cohama https://arxiv.org/abs/1901.01892 Scale-Aware Trident Networks for Object Detection
21 GAN @melleo1978 https://arxiv.org/abs/1912.04958 Analyzing and Improving the Image Quality of StyleGAN StyleGAN2
NAS @wkluk-hk https://arxiv.org/abs/1807.11626 MnasNet: Platform-Aware Neural Architecture Search for Mobile MNAS
強化学習 @Mit-Funa https://arxiv.org/abs/1912.00167 IMPACT: Importance Weighted Asynchronous Architectures with Clipped Target Networks
検索 @yuji38kwmt https://arxiv.org/abs/1903.04638 Challenges in Search on Streaming Services: Netflix Case Study
NN一般 @n-kats https://arxiv.org/abs/1905.11786 Putting An End to End-to-End: Gradient-Isolated Learning of Representations GIM
ライブラリ SLAM @nharu1san https://arxiv.org/abs/1910.01122 OpenVSLAM: A Versatile Visual SLAM Framework OpenVSLAM
ライブラリ @cohama https://www.atmarkit.co.jp/ait/articles/1910/31/news028.html PyTorch vs. TensorFlow
22 画像データセット アノテーション 運転 キャプション @melleo1978 https://arxiv.org/abs/1807.11546 Textual Explanations for Self-Driving Vehicles BDD-X
データ 転移学習 @wkluk-hk https://arxiv.org/abs/2001.02799 Neural Data Server: A Large-Scale Search Engine for Transfer Learning Data
3D @antimon2 https://arxiv.org/abs/2001.05422 Indoor Layout Estimation by 2D LiDAR and Camera Fusion
強化学習 @n-kats https://arxiv.org/abs/1911.08265 Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model MuZero
ライブラリ エッジ @Mit-Funa https://github.com/NNgen/nngen NNgen
23 contrastive_learning @melleo1978 https://arxiv.org/abs/2002.05709 A Simple Framework for Contrastive Learning of Visual Representations SimCLR
セグメンテーション @FunabikiKeisuke http://mprg.jp/data/MPRG/F_group/F20191205_goto.pdf カメラ間の整合性を考慮した全周囲画像のセグメンテーション
強化学習 @Mit-Funa https://arxiv.org/abs/1806.06923 Implicit Quantile Networks for Distributional Reinforcement Learning
アノテーション @yuji38kwmt https://arxiv.org/abs/2002.06626 Block Annotation: Better Image Annotation for Semantic Segmentation with Sub-Image Decomposition
理論 蒸留 @n-kats https://arxiv.org/abs/2002.05715 Self-Distillation Amplifies Regularization in Hilbert Space
物体検出 @cohama https://arxiv.org/abs/1911.12451v3 Empirical Upper Bound in Object Detection and More
24 3D SLAM @melleo1978 https://arxiv.org/abs/2002.05709 Unsupervised Learning of Depth, Optical Flow and Pose with Occlusion from 3D Geometry
強化学習 world_model @Mit-Funa https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html?m=1 Introducing Dreamer: Scalable Reinforcement Learning Using World Models
物体検出 レア事例 @cohama https://arxiv.org/abs/2003.05176 Equalization Loss for Long-Tailed Object Recognition
NN一般 正規化 @n-kats https://arxiv.org/abs/2002.10444 Batch Normalization Biases Deep Residual Networks Towards Shallow Paths Skip init
25 3D @strshp https://drive.google.com/file/d/17ki_YAL1k5CaHHP3pIBFWvw-ztF4CCPP/view 3D Photography using Context-aware Layered Depth Inpainting
高速化 @melleo1978 https://arxiv.org/abs/1903.03129v2 SLIDE : IN DEFENSE OF SMART ALGORITHMS OVER HARDWARE ACCELERATION FOR LARGE-SCALE DEEP LEARNING SYSTEMS SLIDE
VAE @sennin0901 https://arxiv.org/abs/1906.00446 Generating Diverse High-Fidelity Images with VQ-VAE-2 VQ-VAE-2
3D グラフ系 点群 インスタンスセグメンテーション @n-kats https://arxiv.org/abs/2003.13867 3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation
NN一般 軽量モデル @cohama https://arxiv.org/abs/2003.13549v2 Rethinking Depthwise Separable Convolutions: How Intra-Kernel Correlations Lead to Improved MobileNets BSConv
アノテーション @usakotail https://www.arxiv-vanity.com/papers/1909.12493/ Invisible Marker:Automatic Annotation for Object Manipulation
26 GAN 姿勢 @strshp https://menyifang.github.io/projects/ADGAN/ADGAN_files/Paper_ADGAN_CVPR2020.pdf Controllable Person Image Synthesis with Attribute-Decomposed GAN
GAN auto_encoder @sennin0901 https://arxiv.org/abs/2004.04467 Adversarial Latent Autoencoders
最適化 @melleo1978 https://arxiv.org/abs/2001.06782v2 Gradient Surgery for Multi-Task Learning
contrastive_learning world_model @n-kats https://arxiv.org/abs/1911.12247 Contrastive Learning of Structured World Models C-SWM
NN一般 正規化 @cohama https://arxiv.org/abs/1905.11926v4 Network Deconvolution
物体検出 @usakotail https://arxiv.org/abs/2004.10934 YOLOv4: Optimal Speed and Accuracy of Object Detection YOLOv4
27 物体検出 @n-kats https://arxiv.org/abs/2005.12872 End-to-End Object Detection with Transformers DETR
物体検出 @cohama https://arxiv.org/abs/2006.04388v1 Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection Gemeralized fOcal loss
因果推論 @K_Ryuichirou https://www.pnas.org/content/116/10/4156 Metalearners for estimating heterogeneous treatment effects using machine learning
GAN ファッション @usakotail https://openaccess.thecvf.com/content_CVPR_2020/html/Neuberger_Image_Based_Virtual_Try-On_Network_From_Unpaired_Data_CVPR_2020_paper.html Image Based Virtual Try-on Network from Unpaired Data
contrastive_learning 自己教師 @melleo1978 https://arxiv.org/abs/2006.07733v1 Bootstrap Your Own Latent A New Approach to Self-Supervised Learning BYOL
28 教師ノイズ @cohama https://arxiv.org/abs/1910.00701 Distilling Effective Supervision from Severe Label Noise
自然言語 @n-kats https://arxiv.org/abs/2006.16236 Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention
点群 @usakotail https://arxiv.org/abs/1612.00593 PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation PointNet
contrastive_learning 自己教師 @melleo1978 https://arxiv.org/abs/2005.04966v2 Prototypical Contrastive Learning of Unsupervised Representations
インスタンスセグメンテーション トラッキング @sennin0901 https://arxiv.org/abs/1912.04573 Classifying, Segmenting, and Tracking Object Instances in Video with Mask Propagation
29 強化学習 @Mit-Funa https://arxiv.org/abs/1909.01387 Making Efficient Use ofDemonstrations to Solve Hard Exploration Problems R2D3
3D @n-kats https://arxiv.org/abs/1909.01387 NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections NeRF-W
アノテーション インスタンスセグメンテーション @strshp https://www.ecva.net/papers/eccv_2020/papers_ECCV/html/495_ECCV_2020_paper.php PhraseClick: Toward Achieving Flexible Interactive Segmentation by Phrase and Click PhraseClick
画像分類 @cohama https://arxiv.org/abs/2007.09558 Resolution Switchable Networks for Runtime Efficient Image Recognition
3D @melleo1978 https://arxiv.org/abs/2003.10432v2 Atlas: End-to-End 3D Scene Reconstruction from Posed Images Atlas