-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_regression_dB.py
176 lines (143 loc) · 4.89 KB
/
main_regression_dB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import time
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Dense,Flatten, Lambda, BatchNormalization
from tensorflow.keras.callbacks import EarlyStopping
import matplotlib.pyplot as plt
from datetime import datetime
import scipy.io as sio
import random
np.random.seed(0)
# ======================== Parameters ========================
dataID = "./Data/m123-com/"
intType = 6 # 1-5, 6 for combine
print(dataID)
print(intType)
print( "===========================================")
if not os.path.isdir( dataID):
os.mkdir( dataID)
epochs = 400 # number of learning epochs
batch_size = 128
early_stop = EarlyStopping(monitor='val_loss', min_delta=0, patience=5, verbose=1, mode='auto') # Early stopping
# =============== load data =================================
t = sio.loadmat(dataID+'X.mat') # XLong1 XScale1
X = t['X']
t = sio.loadmat(dataID+'Y.mat') # YLong1 YScale1
Y= t['Y']
Nout = Y.shape[1]
print(Nout)
if intType == 1:
X = X[:,[0,1,2]] # awgn
elif intType == 2:
X = X[:,[0,1,2,6]] # CW
X[:,3] = X[:,3]/(1000)
elif intType == 3:
X = X[:,[0,1,2,7]] # Chirp
X[:,3] = X[:,3]/(1000000)
elif intType == 4:
X = X[:,[0,1,2,8,9,10]] # MOD
X[:,3] = X[:,3]/(2)
X[:,4] = X[:,4]/(100)
elif intType == 5:
X = X[:,[0,1,2,11]] # FilNoise
X[:,3] = X[:,3]/(1000)
# ================== Data processing ###################
# Ber in dB scale
sc_factor = 1
Y = Y/sc_factor
Y = - 10*(np.log(Y)/np.log(10)); # log value
for i in range(0,Y.shape[0]):
for j in range(0,2):
if np.isinf(Y[i,j]) or np.isnan(Y[i,j]) or Y[i,j] > 40 :
Y[i,j] = 40
# split data
train_fraction = 0.7
train_size = int(train_fraction*Y.shape[0])
Xtrain = X[:train_size,:]
Ytrain = Y[:train_size,:]
val_fraction = 0.5
val_size = int((Y.shape[0] - train_size)*val_fraction)
Xval = X[train_size:train_size+val_size, :]
Yval = Y[train_size:train_size+val_size,:]
Xtest = X[train_size+val_size:,:]
Ytest = Y[train_size+val_size:,:]
# extend dim
Xtrain = Xtrain[:, :, np.newaxis]
Xtest = Xtest[:, :, np.newaxis]
Xval = Xval[:, :, np.newaxis]
#================ Model Building ===========================
n_neurons = 128
nn_input = Input((Xtrain.shape[1],1))
nn_output = Flatten()(nn_input)
nn_output = Dense(n_neurons,activation='relu')(nn_output)
# nn_output = BatchNormalization()(nn_output)
nn_output = Dense(n_neurons,activation='relu')(nn_output)
nn_output = Dense(n_neurons,activation='relu')(nn_output)
nn_output = Dense(n_neurons,activation='relu')(nn_output)
nn_output = Dense(Nout,activation='linear')(nn_output)
nn = Model(inputs=nn_input,outputs=nn_output)
#================ Model Compiling ===========================
optz = tf.keras.optimizers.Adam(lr=0.0001,beta_1=0.9, beta_2=0.999, amsgrad=False)
nn.compile(optimizer=optz, loss='mse',metrics=['mse'])
nn.summary()
train_hist = nn.fit(x=Xtrain,y=Ytrain,\
batch_size = batch_size ,epochs = epochs ,\
validation_data=(Xval, Yval), shuffle=True, callbacks=[early_stop])
# ================ Evaluate Model ===========================
Ypredtrain = nn.predict(Xtrain)
Ypred = nn.predict(Xtest)
sio.savemat(dataID+'Ytest.mat', {'Ytest':Ytest})
sio.savemat(dataID+'Ypred.mat', {'Ypred':Ypred})
err = np.mean(abs(Ytest-Ypred),axis=0)
print( "--- MAE: --- %s" %(err))
YTEST = Ytest
YPRED = Ypred
for ID in range(0,Nout):
Ytest = YTEST[:,ID]
Ypred = YPRED[:,ID]
cor = np.corrcoef(Ytest, Ypred)
print(cor)
print(dataID)
print(ID)
# scatter plot of Y_true VS Y_pred
plt.figure(6)
plt.scatter(Ytest, Ypred, facecolors='none', edgecolors='b')
plt.title(' est vs ground')
plt.ylabel('est')
plt.xlabel('ground')
plt.grid(True)
plt.savefig(dataID+'scatter-o-%d.png'%ID)
plt. clf()
plt.figure(7)
plt.scatter(Ytest, Ypred, s =1, facecolors='none', edgecolors='b')
plt.title(' est vs ground')
plt.ylabel('est')
plt.xlabel('ground')
plt.grid(True)
plt.savefig(dataID+'scatter%d.png'%ID)
plt. clf()
plt.figure(2)
plt.hist(Ytest-Ypred,bins=200)
plt.ylabel('Number of occurence')
plt.xlabel('Estimate error (deg)')
plt.grid(True)
plt.title('histogram of estimation error')
plt.savefig(dataID+'hist%d.png'%ID)
plt. clf()
with open(dataID+"result.txt", "a") as f:
f.write('----- MAE: %s -------- \n'%err)
f.write('----- ID: %s -------- \n'%ID)
f.write('----- cor: %s -------- \n'%cor)
f.write('\n')
f.write('\n')
f.write('\n')
print("check result.txt file")
#============== save model to file =============
# model_json = nn.to_json()
# with open("./Results/model_TF.json", "w") as json_file:
# json_file.write(model_json)
# nn.save_weights("./Results/model_TF.h5")
# print("Saved model to disk")