-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlangchain.py
54 lines (42 loc) · 1.4 KB
/
langchain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from langchain_core.output_parsers import PydanticOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableLambda, RunnableParallel
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field
import promptTemplate
model = ChatOpenAI(model="gpt-4o-mini", temperature=1)
# ====== Define Pydantic Model ======
class Recipe(BaseModel): # noqa: D101
ingredients: list[str] = Field(description="材料")
steps: list[str] = Field(description="手順")
output_parser = PydanticOutputParser(pydantic_object=Recipe)
format_instructions = output_parser.get_format_instructions()
# ====== Define Prompt ======
prompt = promptTemplate.recipe_prompt
prompt_with_format_instructions = prompt.partial(
format_instructions=format_instructions
)
def printerer(text: str) -> str:
print(text)
return text
base_chain = (
prompt_with_format_instructions
| RunnableLambda(printerer)
| model
| output_parser
)
synthesize_prompt = ChatPromptTemplate.from_messages(
[
("system", "レシピの似た点があれば教えてください"),
("human", "レシピ1: {rice}\n\nレシピ2: {nann}"),
]
)
synthesize_chain = (RunnableParallel({
"rice": base_chain,
"nann": base_chain
})
| synthesize_prompt
)
result=synthesize_chain.invoke({"dish": "チキンカレー"})
print("===result===")
print(result)