Skip to content

Implementations of matrix factorization/completion (and something related) algorithms

Notifications You must be signed in to change notification settings

yunjhongwu/matrix-routines

Folders and files

NameName
Last commit message
Last commit date

Latest commit

author
Yun-Jhong Wu
Mar 18, 2017
b5f102a · Mar 18, 2017

History

17 Commits
Mar 18, 2017
Sep 17, 2016
Jun 16, 2015
Mar 18, 2017
Mar 10, 2017
Jun 12, 2015
Apr 14, 2016
Aug 8, 2015
Jun 2, 2016
Jun 1, 2016
Jun 12, 2015

Repository files navigation

Matrix routines

  • ccnn.py: Zhang, Y., Liang, P., & Wainwright, M. J. (2016). Convexified convolutional neural networks. arXiv preprint arXiv:1609.01000.
  • cur.py: Mahoney, M. W., & Drineas, P. (2009). CUR matrix decompositions for improved data analysis. Proceedings of the National Academy of Sciences, 106(3), 697-702.
  • fastRG.py: Rohe, K., Tao, J., Han, X., & Binkiewicz, N. (2017). A note on quickly sampling a sparse matrix with low rank expectation. arXiv preprint arXiv:1703.02998.
  • linear_time_svd: Drineas, P., Kannan, R., & Mahoney, M. W. (2006). Fast Monte Carlo algorithms for matrices II: Computing a low-rank approximation to a matrix. SIAM Journal on computing, 36(1), 158-183.
  • matrix_completion.py: Lin, Z., Chen, M., & Ma, Y. (2010). The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055.
  • neighborhood_smoothing.py: Zhang, Y., Levina, E. and Zhu, J. (2016) Estimating neighborhood edge probabilities by neighborhood smoothing. arXiv preprint arXiv: 1509.08588.
  • parafac2.py: Kiers, H. A., Ten Berge, J. M., & Bro, R. (1999). PARAFAC2-Part I. A direct fitting algorithm for the PARAFAC2 model. Journal of Chemometrics, 13(3-4), 275-294.
  • robust_pca.py: Wright, J., Ganesh, A., Rao, S., Peng, Y., & Ma, Y. (2009). Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. Advances in neural information processing systems, 2080-2088.
  • randomized_svd.java: Halko, N., Martinsson, P. G., & Tropp, J. A. (2011). Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review, 53(2), 217-288.
  • regularized_matrix_regression.py: Zhou, H., & Li, L. (2014). Regularized matrix regression. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(2), 463-483.

About

Implementations of matrix factorization/completion (and something related) algorithms

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published