forked from prs-eth/DeFlow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
74 lines (57 loc) · 2.09 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import logging, sys
import torch
from configs import config
from models.deflow import DeFlowNet
from models.raft import RAFT
from libs.dataloader import get_dataloaders
from libs.trainer import Trainer
from libs.losses import SceneFlow_Loss, optical_flow_ft_loss
from toolbox.utils import setup_seed
from omegaconf import DictConfig
import argparse
def instantiate_config(cfg: dict):
"""instantiate all obejct from configurations
Args:
cfg (dict): dict from yaml
Returns:
args (dict): dict with instances
"""
logging.info('Instantiating configurations')
instances = dict()
## device
if cfg.misc.use_gpu == True:
instances['device'] = torch.device('cuda')
else:
instances['device'] = torch.device('cpu')
## dataloader
instances['dataloader'] = get_dataloaders(cfg)
## model, optimizer, scheduler
if cfg.network.model == 'deflow':
instances['model'] = DeFlowNet(cfg)
instances['loss'] = SceneFlow_Loss(cfg)
elif cfg.network.model == 'raft':
instances['model'] = RAFT(cfg.network)
instances['loss'] = optical_flow_ft_loss(cfg)
else:
raise NotImplementedError('Unknown model! Instantiation fails!')
instances['optimizer'] = config.get_optimizer(cfg, instances['model'])
instances['scheduler'] = config.get_scheduler(cfg, instances['optimizer'])
return instances
def main(cfg_path:str):
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[
# logging.FileHandler("debug.log"),
logging.StreamHandler(sys.stdout)])
cfg = config.get_config(cfg_path)
cfg = DictConfig(cfg)
instances = instantiate_config(cfg)
setup_seed(cfg.misc.seed)
trainer = Trainer(cfg, instances)
trainer.run()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--config_path', default = 'configs/deflow_default.yaml', help='Path to pretrained weights')
config_path = parser.parse_args().config_path
main(config_path)