-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathconfig.m
25 lines (20 loc) · 1012 Bytes
/
config.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
base_dir = [fileparts(mfilename('fullpath')) '/'];
% HICO image directory
im_dir = [base_dir './external/hico_20150920/images/'];
% HICO annotation file
%
% anno_iccv.mat is identical to anno.mat (i.e. the annotation file come with
% HICO) with only one difference. In anno_iccv.mat, we provide our sampled
% 'unknown' images that we use as extra ground-truth negatives for each
% action class (e.g. images do not contain 'bicycles' for action 'ridining a
% bicycle'). This sampling is necessary for exact replication of our results
% (in the default setting) in the paper.
%
% See data/generate_anno_iccv.m for more details.
%
anno_file = [base_dir './data/hico_anno/anno_iccv.mat'];
anno_sep_file = [base_dir './data/hico_anno/anno_sep.mat'];
% The MATLAB code will use parfor for training HOI classifiers. Uncomment the
% following line and set the poolsize according to your need. Leave the line
% commented out if you want MATLAB to set the poolsize automatically.
% poolsize = 10;