-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset.py
40 lines (38 loc) · 2.01 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from __future__ import print_function
import torch
import torchvision.datasets as dset
import torchvision.transforms as transforms
def get_dataloader(opt):
if opt.dataset in ['imagenet', 'folder', 'lfw']:
# folder dataset
dataset = dset.ImageFolder(root=opt.dataroot,
transform=transforms.Compose([
transforms.Scale(opt.imageScaleSize),
transforms.CenterCrop(opt.imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5)),
]))
elif opt.dataset == 'lsun':
dataset = dset.LSUN(db_path=opt.dataroot, classes=['bedroom_train'],
transform=transforms.Compose([
transforms.Scale(opt.imageScaleSize),
transforms.CenterCrop(opt.imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5)),
]))
elif opt.dataset == 'cifar10':
dataset = dset.CIFAR10(root=opt.dataroot, download=True,
transform=transforms.Compose([
transforms.Scale(opt.imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5)),
])
)
assert dataset
dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batch_size,
shuffle=True,
num_workers=int(opt.workers))
return dataloader