-
-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathbenchmark.py
292 lines (251 loc) · 10.3 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# -*- coding: utf-8 -*-
"""Benchmark of all implemented algorithms
"""
# Author: Yue Zhao <[email protected]>
# License: BSD 2 clause
from __future__ import division
from __future__ import print_function
import os
import sys
from time import time
# temporary solution for relative imports in case pyod is not installed
# if pyod is installed, no need to use the following line
sys.path.append(
os.path.abspath(os.path.join(os.path.dirname("__file__"), '..')))
# supress warnings for clean output
import warnings
warnings.filterwarnings("ignore")
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from scipy.io import loadmat
from pyod.models.abod import ABOD
from pyod.models.cblof import CBLOF
from pyod.models.feature_bagging import FeatureBagging
from pyod.models.hbos import HBOS
from pyod.models.iforest import IForest
from pyod.models.knn import KNN
from pyod.models.lof import LOF
from pyod.models.mcd import MCD
from pyod.models.ocsvm import OCSVM
from pyod.models.pca import PCA
from pyod.models.cof import COF
from pyod.models.sod import SOD
from pyod.models.auto_encoder import AutoEncoder
from pyod.models.cd import CD
from pyod.models.copod import COPOD
from pyod.models.dif import DIF
from pyod.models.ecod import ECOD
from pyod.models.gmm import GMM
from pyod.models.kde import KDE
from pyod.models.lmdd import LMDD
from pyod.models.loci import LOCI #19S
from pyod.models.loda import LODA
from pyod.models.qmcd import QMCD
from pyod.models.sampling import Sampling
from pyod.models.sos import SOS
from pyod.models.alad import ALAD #40s
from pyod.models.anogan import AnoGAN #151s
from pyod.models.inne import INNE
from pyod.models.kpca import KPCA
from pyod.models.lscp import LSCP
from pyod.models.lunar import LUNAR
from pyod.models.mad import MAD
from pyod.models.mo_gaal import MO_GAAL
from pyod.models.rgraph import RGraph #271S
from pyod.models.rod import ROD
from pyod.models.so_gaal import SO_GAAL
from pyod.models.sod import SOD
from pyod.models.vae import VAE
from pyod.utils.utility import standardizer
from pyod.utils.utility import precision_n_scores
from sklearn.metrics import roc_auc_score
# TODO: add neural networks, LOCI, SOS, COF, SOD
# Define data file and read X and y
mat_file_list = ['arrhythmia.mat',
'cardio.mat',
'glass.mat',
'ionosphere.mat',
'letter.mat',
'lympho.mat',
'mnist.mat',
'musk.mat',
'optdigits.mat',
'pendigits.mat',
'pima.mat',
'satellite.mat',
'satimage-2.mat',
'shuttle.mat',
'vertebral.mat',
'vowels.mat',
'wbc.mat'
]
# define the number of iterations
n_ite = 1
df_columns = ['Data', '#Samples', '# Dimensions', 'Outlier Perc',
'ABOD', 'CBLOF', 'FB', 'HBOS', 'IForest', 'KNN', 'LOF',
'MCD', 'OCSVM', 'PCA', 'AutoEncoder', 'CD', 'COPOD', 'DIF', 'ECOD',
'GMM', 'KDE', 'LODA', 'QMCD','Sampling', 'SOS', 'ALAD', 'AnoGAN ',
'INNE', 'KPCA', 'LMDD', 'LOCI', 'LSCP', 'LUNAR', 'MO_GAAL', 'RGraph', 'SO_GAAL', 'SOD', 'VAE']
n_classifiers = len(df_columns)-4
# initialize the container for saving the results
roc_df = pd.DataFrame(columns=df_columns)
prn_df = pd.DataFrame(columns=df_columns)
time_df = pd.DataFrame(columns=df_columns)
for j in range(len(mat_file_list)):
mat_file = mat_file_list[j]
mat = loadmat(os.path.join('data', mat_file))
X = mat['X']
y = mat['y'].ravel()
outliers_fraction = np.count_nonzero(y) / len(y)
outliers_percentage = round(outliers_fraction * 100, ndigits=4)
# construct containers for saving results
roc_list = [mat_file[:-4], X.shape[0], X.shape[1], outliers_percentage]
prn_list = [mat_file[:-4], X.shape[0], X.shape[1], outliers_percentage]
time_list = [mat_file[:-4], X.shape[0], X.shape[1], outliers_percentage]
roc_mat = np.zeros([n_ite, n_classifiers])
prn_mat = np.zeros([n_ite, n_classifiers])
time_mat = np.zeros([n_ite, n_classifiers])
for i in range(n_ite):
print("\n... Processing", mat_file, '...', 'Iteration', i + 1)
random_state = np.random.RandomState(i)
# 60% data for training and 40% for testing
X_train, X_test, y_train, y_test = \
train_test_split(X, y, test_size=0.4, random_state=random_state)
# standardizing data for processing
X_train_norm, X_test_norm = standardizer(X_train, X_test)
classifiers = {
'Angle-based Outlier Detector (ABOD)': ABOD(
contamination=outliers_fraction),
'Cluster-based Local Outlier Factor': CBLOF(
n_clusters=10,
contamination=outliers_fraction,
check_estimator=False,
random_state=random_state),
'Feature Bagging': FeatureBagging(
contamination=outliers_fraction,
random_state=random_state),
'Histogram-base Outlier Detection (HBOS)': HBOS(
contamination=outliers_fraction),
'Isolation Forest': IForest(
contamination=outliers_fraction,
random_state=random_state),
'K Nearest Neighbors (KNN)': KNN(
contamination=outliers_fraction),
'Local Outlier Factor (LOF)': LOF(
contamination=outliers_fraction),
'Minimum Covariance Determinant (MCD)': MCD(
contamination=outliers_fraction,
random_state=random_state),
'One-class SVM (OCSVM)': OCSVM(
contamination=outliers_fraction),
'Principal Component Analysis (PCA)': PCA(
contamination=outliers_fraction,
random_state=random_state),
'AutoEncoder': AutoEncoder(
contamination=outliers_fraction),
'CD': CD(
contamination=outliers_fraction),
'COPOD': COPOD(
contamination=outliers_fraction),
'DIF': DIF(
contamination=outliers_fraction),
'ECOD': ECOD(
contamination=outliers_fraction),
'GMM': GMM(
contamination=outliers_fraction),
'KDE': KDE(
contamination=outliers_fraction),
'LODA': LODA(
contamination=outliers_fraction),
'QMCD': QMCD(
contamination=outliers_fraction),
'Sampling': Sampling(
contamination=outliers_fraction),
'SOS': SOS(
contamination=outliers_fraction),
# 'ALAD': ALAD(
# contamination=outliers_fraction),
# 'AnoGAN':AnoGAN(
# contamination=outliers_fraction),
'INNE': INNE(contamination=outliers_fraction),
'KPCA': KPCA(contamination=outliers_fraction),
'LMDD': LMDD(contamination=outliers_fraction),
# 'LOCI': LOCI(contamination=outliers_fraction),
'LUNAR': LUNAR(contamination=outliers_fraction),
'MO_GAAL': MO_GAAL(contamination=outliers_fraction),
# 'RGraph': RGraph(contamination=outliers_fraction),
# 'SO_GAAL': SO_GAAL(contamination=outliers_fraction),
'SOD': SOD(contamination=outliers_fraction),
}
classifiers_indices = {
'Angle-based Outlier Detector (ABOD)': 0,
'Cluster-based Local Outlier Factor': 1,
'Feature Bagging': 2,
'Histogram-base Outlier Detection (HBOS)': 3,
'Isolation Forest': 4,
'K Nearest Neighbors (KNN)': 5,
'Local Outlier Factor (LOF)': 6,
'Minimum Covariance Determinant (MCD)': 7,
'One-class SVM (OCSVM)': 8,
'Principal Component Analysis (PCA)': 9,
'AutoEncoder': 10,
'CD': 11,
'COPOD': 12,
'DIF': 13,
'ECOD': 14,
'GMM': 15,
'KDE': 16,
'LODA': 17,
'QMCD': 18,
'Sampling': 19,
'SOS': 20,
'ALAD': 21,
'AnoGAN': 22,
'INNE': 23,
'KPCA': 24,
'LMDD': 25,
'LOCI': 26,
'LUNAR': 27,
'MO_GAAL': 28,
'RGraph': 29,
'SO_GAAL': 30,
'SOD': 31,
}
for clf_name, clf in classifiers.items():
t0 = time()
clf.fit(X_train_norm)
test_scores = clf.decision_function(X_test_norm)
# Handle NaN values in test_scores
test_scores = np.nan_to_num(test_scores,
nan=0.0,
posinf=np.nanmax(test_scores),
neginf=np.nanmin(test_scores))
# Handle NaN values in y_test
y_test = np.nan_to_num(y_test, nan=0.0, posinf=0.0, neginf=0.0)
t1 = time()
duration = round(t1 - t0, ndigits=4)
roc = round(roc_auc_score(y_test, test_scores), ndigits=4)
prn = round(precision_n_scores(y_test, test_scores), ndigits=4)
print('{clf_name} ROC:{roc}, precision @ rank n:{prn}, '
'execution time: {duration}s'.format(
clf_name=clf_name, roc=roc, prn=prn, duration=duration))
time_mat[i, classifiers_indices[clf_name]] = duration
roc_mat[i, classifiers_indices[clf_name]] = roc
prn_mat[i, classifiers_indices[clf_name]] = prn
time_list = time_list + np.mean(time_mat, axis=0).tolist()
temp_df = pd.DataFrame(time_list).transpose()
temp_df.columns = df_columns
time_df = pd.concat([time_df, temp_df], axis=0)
roc_list = roc_list + np.mean(roc_mat, axis=0).tolist()
temp_df = pd.DataFrame(roc_list).transpose()
temp_df.columns = df_columns
roc_df = pd.concat([roc_df, temp_df], axis=0)
prn_list = prn_list + np.mean(prn_mat, axis=0).tolist()
temp_df = pd.DataFrame(prn_list).transpose()
temp_df.columns = df_columns
prn_df = pd.concat([prn_df, temp_df], axis=0)
# Save the results for each run
time_df.to_csv('time.csv', index=False, float_format='%.3f')
roc_df.to_csv('roc.csv', index=False, float_format='%.3f')
prn_df.to_csv('prc.csv', index=False, float_format='%.3f')