-
-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathauto_encoder_example.py
52 lines (42 loc) · 1.78 KB
/
auto_encoder_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# -*- coding: utf-8 -*-
"""Example of using AutoEncoder for outlier detection
"""
# Author: Tiankai Yang <[email protected]>
# License: BSD 2 clause
import os
import sys
# temporary solution for relative imports in case pyod is not installed
# if pyod is installed, no need to use the following line
sys.path.append(
os.path.abspath(os.path.join(os.path.dirname("__file__"), '..')))
sys.path.append(os.path.abspath(os.path.dirname("__file__")))
from pyod.models.auto_encoder import AutoEncoder
from pyod.utils.data import generate_data
from pyod.utils.data import evaluate_print
if __name__ == "__main__":
contamination = 0.1 # percentage of outliers
n_train = 20000 # number of training points
n_test = 2000 # number of testing points
n_features = 300 # number of features
# Generate sample data
X_train, X_test, y_train, y_test = \
generate_data(n_train=n_train,
n_test=n_test,
n_features=n_features,
contamination=contamination,
random_state=42)
# train AutoEncoder detector
clf_name = 'AutoEncoder'
clf = AutoEncoder(epoch_num=30, contamination=contamination)
clf.fit(X_train)
# get the prediction labels and outlier scores of the training data
y_train_pred = clf.labels_ # binary labels (0: inliers, 1: outliers)
y_train_scores = clf.decision_scores_ # raw outlier scores
# get the prediction on the test data
y_test_pred = clf.predict(X_test) # outlier labels (0 or 1)
y_test_scores = clf.decision_function(X_test) # outlier scores
# evaluate and print the results
print("\nOn Training Data:")
evaluate_print(clf_name, y_train, y_train_scores)
print("\nOn Test Data:")
evaluate_print(clf_name, y_test, y_test_scores)