-
-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathperf_check.py
54 lines (42 loc) · 1.62 KB
/
perf_check.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# -*- coding: utf-8 -*-
"""Example of combining multiple base outlier scores. Four combination
frameworks are demonstrated:
"""
# Author: Yue Zhao <[email protected]>
# License: BSD 2 clause
from __future__ import division
from __future__ import print_function
import os
import sys
# temporary solution for relative imports in case pyod is not installed
# if pyod is installed, no need to use the following line
sys.path.append(
os.path.abspath(os.path.join(os.path.dirname("__file__"), '..')))
from scipy.io import loadmat
from pyod.models.knn import KNN
from pyod.utils.data import generate_data
from pyod.utils.data import evaluate_print
if __name__ == "__main__":
file_list = ['arrhythmia.mat', 'cardio.mat', 'ionosphere.mat',
'letter.mat', 'pima.mat']
# Define data file and read X and y
# Generate some data if the source data is missing
for mat_file in file_list:
try:
mat = loadmat(os.path.join('data', mat_file))
except TypeError:
print('{data_file} does not exist. Use generated data'.format(
data_file=mat_file))
X, y = generate_data(train_only=True) # load data
except IOError:
print('{data_file} does not exist. Use generated data'.format(
data_file=mat_file))
X, y = generate_data(train_only=True) # load data
else:
X = mat['X']
y = mat['y'].ravel()
clf = KNN() # the algorithm you want to check
# clf = KNN_new()
clf.fit(X) # fit model
# print performance
evaluate_print(mat_file, y, clf.decision_scores_)