-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmain.py
64 lines (52 loc) · 3.38 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from utils.default_settings import *
from utils.utl import try_mkdir
import argparse
from SceneGraphNet.train import train_model
''' parser input '''
parser = argparse.ArgumentParser()
# train process settings
parser.add_argument('--nepoch', type=int, default=100, help='number of epochs to train for')
parser.add_argument('--batch_size', type=int, default=1, help='batch size')
parser.add_argument('--lr', type=float, default=5e-4, help='learning rate')
parser.add_argument('--reg_lr', type=float, default=1e-5, help='weight decay')
parser.add_argument('--d_vec_dim', type=int, default=100, help='feature dimension for encoded vector')
parser.add_argument('--h_vec_dim', type=int, default=300, help='feature dimension for hidden layers')
parser.add_argument('--train_cat', default=False, action='store_true', help='train for object categories')
parser.add_argument('--train_dim', default=False, action='store_true', help='train for object dimensions')
# model variants
parser.add_argument('--K', type=int, default=3, help='times of iteration')
parser.add_argument('--aggregate_in_order', default=True, action='store_false', help='if aggregating object features in distance order')
parser.add_argument('--aggregation_func', default='GRU', help='aggregation function, choice=[GRU, CatRNN, MaxPool, Sum]')
parser.add_argument('--decode_cat_d_vec', default=True, action='store_false', help='if decode concatenated object feature')
parser.add_argument('--cat_msg', default=False, action='store_true', help='if true, use MLP to predict message passing, else, directly use node representation as message')
parser.add_argument('--adapt_training_on_large_graph', default=True, action='store_false', help='if adapt acceleration on on large graphs')
parser.add_argument('--max_scene_nodes', type=int, default=60, help='(if adpat accelecration) max number of nodes under the root node. if exceed, split into subgraphs')
# room type settings
parser.add_argument('--room_type', type=str, default='bedroom', help='room type, choice=[bedroom, living, bathroom, office]')
parser.add_argument('--num_train_rooms', default=5000, type=int, help='number of rooms for training')
parser.add_argument('--num_test_rooms', default=500, type=int, help='number of rooms for testing')
# for load and test on pretrained model
parser.add_argument('--test', default=False, action='store_true')
parser.add_argument('--load_model_name', type=str, default='', help='dir of pretrained model')
parser.add_argument('--load_model_along_with_optimizer', default=False, action='store_true', help='if load pretrained model along with optimizer')
# others
parser.add_argument('--verbose', default=0, type=int, help='')
parser.add_argument('--name', default='my-train-model')
opt_parser = parser.parse_args()
opt_parser.write = not opt_parser.test
id2cat_file = open('data/preprocess/TRAIN_id2cat_{}.json'.format(opt_parser.room_type))
opt_parser.id2cat = json.load(id2cat_file)
opt_parser.cat2id = {opt_parser.id2cat[id]: id for id in opt_parser.id2cat.keys()}
if(opt_parser.load_model_name != ''):
opt_parser.ckpt = os.path.join(ckpt_dir, opt_parser.load_model_name, 'Entire_model_max_acc.pth')
else:
opt_parser.ckpt = ''
opt_parser.outf = os.path.join(ckpt_dir, opt_parser.name)
try_mkdir(opt_parser.outf)
M = train_model(opt_parser=opt_parser)
if(not opt_parser.test):
for epoch in range(opt_parser.nepoch):
M.train(epoch)
M.test(epoch)
else:
M.test(0)